DH

25 records found

The mechanical strength of sintered nanoparticles (NPs) limits their application in advanced electronics packaging. In this study, we explore the anisotropy in the microstructure and mechanical properties of sintered copper (Cu) NPs by combining experimental techniques with molec ...
Sintered nanocopper (nanoCu) paste, exhibiting excellent electrical, thermal, and mechanical performances, offers promise for interconnections in wide bandgap (WBG) semiconductors operating at higher temperatures. However, sintered nanoCu is prone to severe corrosion in environme ...
During operation in environments containing hydrogen sulfide (H2S), such as in offshore and coastal environments, sintered nanoCu in power electronics is susceptible to degradation caused by corrosion. In this study, experimental and molecular dynamics (MD) simulation ...
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation r ...
IN advancing the ’More thanMoore’ paradigm, heterogeneous integration has emerged to facilitate the creation of highly efficient, compact, and multi-functional semiconductor systems. Addressing the challenges related to power efficiency, superior performance, and integration dens ...
Nano-metal materials have received considerable attention because of their promising performance in wide bandgap semiconductor packaging. In this study, molecular dynamics (MD) simulation was performed to simulate the nano-Cu sintering mechanism and the subsequent mechanical beha ...
Driven by the increasing demand for high-power systems, ceramic substrates have received more attention for handling higher power density. Warpage in active metal brazed (AMB) ceramic substrate becomes a critical issue as it can deteriorate the reliability performance. This study ...
Prognostic monitoring of power quad flat no-lead (PQFN) packages with four distinct silver pastes, each varying in material composition (pure-Ag and resin-reinforced hybridAg) and sintering processes (pressure-assisted and pressureless), was investigated in this study. The PQFN p ...
To fulfill the high-temperature application requirement of high-power electronics packaging, Cu nanoparticle sintering technology, with benefits in low-temperature processing and high-melting point, has attracted considerable attention as a promising candidate for the die-attach ...

Corrigendum to “Insights into the high-sulphur aging of sintered silver nanoparticles

An experimental and ReaxFF study” [Corros. Sci. 192 (2021) 109846] (Corrosion Science (2021) 192, (S0010938X21006120), (10.1016/j.corsci.2021.109846))

The authors regret that in the above article the Fig. 3 contains an error of cross-section image of group C at 48 h on Page 4. Fig. 3 should read: This correction does not influence the method, results and conclusions of the original article. The authors would like to apologise f ...
The nano-copper particles are widely used in the sintering processes of packaging wide bandgap semiconductors. Despite the significant success in the industry, the mechanism bridging the sintering process to the mechanical properties of sintered nano-copper is not yet well-modele ...
Nano-metal materials sintering has received increasing attention in recent years for its promising performance in the wide bandgap semiconductor packaging. In this paper, molecular dynamics (MD) simulation method were applied to simulate the nano-Cu sintering mechanism and the su ...
Driving by the increased demand for hermetic packaging in the more than Moore (MtM) roadmap, a Cu nanoparticle sintering-enabled hermetic sealing solution was developed with a small-size sealing ring. The developed technology simplifies microfabrication and requires less surface ...
As a critical part of speeding up industrial electrification, power electronics, and its packaging technology are undergoing rapid development. Cu nanoparticle sintering technology has therefore received extensive attention for its excellent performance in the die-attachment laye ...
The rapid development of power electronics has challenged the thermal integrity of semiconductor packaging. Further developments in this domain can be supported significantly by utilizing fast and flexible thermal characteristic evaluation. This study employs the transient dual i ...
As a promising technology for high-power and high-temperature power electronics packaging, nanocopper (nanoCu) paste sintering has recently received increasing attention as a die-attachment. The high-temperature deformation of sintered nanoCu paste and its underlying mechanisms c ...
The application of microporous sintered copper (Cu) as a bonding material to replace conventional die-attach materials in power electronic devices has attracted considerable interest. Many previous studies have focused on the effect of processing parameters (temperature, time, pr ...
Advances in semiconductor device manufacturing technologies are enabled by the development and application of novel materials. Especially one class of materials, nanoporous films, became building blocks for a broad range of applications, such as gas sensors and interconnects. The ...

Effects of temperature and grain size on diffusivity of aluminium

Electromigration experiment and molecular dynamic simulation

Understanding the atomic diffusion features in metallic material is significant to explain the diffusion-controlled physical processes. In this paper, using electromigration experiments and molecular dynamic (MD) simulations, we investigate the effects of grain size and temperatu ...
Nano-copper sintering is one of new die-attachment and interconnection solutions to realize the wide bandgap semiconductor power electronics packaging with benefits on high temperature, low inductance, low thermal resistance and low cost. Aiming to assess the high-temperature rel ...