D. Hu
25 records found
1
The mechanical strength of sintered nanoparticles (NPs) limits their application in advanced electronics packaging. In this study, we explore the anisotropy in the microstructure and mechanical properties of sintered copper (Cu) NPs by combining experimental techniques with molecular dynamics (MD) simulations. We establish a clear relationship between processing conditions, microstructural evolution, and resulting properties in pressure-assisted sintering of Cu NPs. Our findings reveal that pressure-assisted sintering induces significant anisotropy in the microstructure, as evidenced by variations in areal relative density and the orientation distribution of necks formed during sintering. Specifically, along the direction of applied pressure, the microstructure exhibits reduced variation in areal relative density and a higher prevalence of necks with favorable orientations. The resulting anisotropic mechanical properties, with significantly higher strength along the pressure direction compared to other directions, are demonstrated through micro-cantilever bending tests and tensile simulations. This anisotropy is further explained by the combined effects of strain localization (influenced by areal relative density) and the failure modes of necks (determined by their orientation relative to the loading direction). This work provides valuable insights into the analysis of sintered NPs microstructures and offers guidance for optimizing the sintering process.
@enDuring operation in environments containing hydrogen sulfide (H2S), such as in offshore and coastal environments, sintered nanoCu in power electronics is susceptible to degradation caused by corrosion. In this study, experimental and molecular dynamics (MD) simulation analyses were conducted to investigate the evolution and mechanism of H2S-induced corrosion of sintered nanoCu, and bulk Cu was used as the reference. The following results are obtained: (1) Both sintered nanoCu and bulk Cu reacted with O2 prior to reacting with H2S, forming Cu2O, Cu2S, CuO, and CuS. In addition, sintered nanoCu exhibited more severe corrosion. (2) For both sintered nanoCu and bulk Cu, H2S-induced corrosion resulted in the deterioration of electrical, thermal, and mechanical properties, and sintered nanoCu experienced a greater extent of deterioration. (3) As was ascertained through Reactive Force Field (ReaxFF) MD simulations, the penetration of H2S and O2 combined with the upward migration of Cu resulted in the formation of a corrosion film. In addition, compared to bulk Cu, the H2S and O2 penetration in the sintered nanoCu structure was observed to occur to a greater depth, accounting for the more pronounced performance degradation.
@enInsights into sulfur and hydrogen sulfide induced corrosion of sintered nanocopper paste
A combined experimental and ab initio study
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation resulting from corrosion in sulfur-containing corrosive environments such as offshore areas. In this study, experiments, including aging test and corrosion characterization, and simulations based on density functional theory (DFT) studies were conducted to explore the corrosion behavior and mechanism of elemental sulfur (S8) and hydrogen sulfide (H2S) on sintered nanocopper. The experimental results indicated that loose corrosion products were observed on the sintered nanocopper during the ageing process involving S8, and compact layered corrosion products formed during the ageing process involving H2S. Furthermore, similar corrosion product compositions (Cu2O, Cu2S, CuO, CuS, and potentially Cu2SO4 or CuSO4) were observed in both the S8- and H2S-ageing processes. However, the S8-ageing process exhibited more noticeable corrosion penetration. This was explained in simulations results: the unsaturated Cu sites on the oxide layer [Cu2O(1 1 1)] of the sintered nanocopper could adsorb both H2S and S8, while the saturated Cu sites only exhibited the potential to adsorb S8.
@enNano-metal materials have received considerable attention because of their promising performance in wide bandgap semiconductor packaging. In this study, molecular dynamics (MD) simulation was performed to simulate the nano-Cu sintering mechanism and the subsequent mechanical behaviors. Hybrid sintering, comprising nanosphere (NS) and nanoflake (NF), was performed at temperatures from 500 to 650 K. Furthermore, shear and tensile simulations were conducted with constant strain rates on the sintered structure at multiple temperatures. Subsequently, the extracted mechanical properties were correlated with the sintering behavior. The results revealed that the mechanical properties of the nano-Cu sintered structure could be improved by tuning material composition and increasing the sintering temperature. We established a relationship between the sintered microstructure and mechanical response. The shear modulus and shear strength of the sintered structure with NF particles increased to 41.20 and 3.51 GPa respectively. Furthermore, the elastic modulus increased to 55.60, and the tensile strength increased to 4.88 GPa. This result provides insights into the preparation phase of nano-Cu paste for sintering technology.
@enPrognostic monitoring of power quad flat no-lead (PQFN) packages with four distinct silver pastes, each varying in material composition (pure-Ag and resin-reinforced hybridAg) and sintering processes (pressure-assisted and pressureless), was investigated in this study. The PQFN packages with silver sintered die-attach materials were subjected to thermal cycling tests (?55 ° C to 150 ° C), and the performance degradation was evaluated based on the following metrics: 1) electrical ON-state resistance RDSon monitored periodically at specific thermal cycling intervals and 2) transient thermal impedance Zth(t = 0.1 s) monitored online during thermal cycling. These measurements were further validated using acoustic microscopy imaging and cross-sectional inspection. The pressureless Ag-sintering material demonstrated comparable performance to pressure-assisted Agsintering, with a dense microstructure, and consistent electrical and stable thermal performance. Whereas the pressureless resinreinforced hybrid-Ag material exhibited degradation with a relative increase of 33% in RDSon, 38% in Zth(t = 0.1 s), and 67% delamination of the die-attach interface over 1000 cycles. These findings suggest that pressureless Ag-sintering may offer a viable alternative to pressure-assisted methods for lead (Pb)- free die-attachments, while resin-reinforced hybrid-Ag requires further development for improved thermomechanical reliability..
@enTo fulfill the high-temperature application requirement of high-power electronics packaging, Cu nanoparticle sintering technology, with benefits in low-temperature processing and high-melting point, has attracted considerable attention as a promising candidate for the die-attach interconnect. Comprehensive mechanical characterization of the sintered layer at a microscale is necessary to deepen the understanding of the fracture behavior and improve the reliable design of materials. In this study, microscale cantilevers with different notch depths were fabricated in a 20 MPa sintered interconnect layer. Continuous dynamical fracture testing of the microcantilevers was conducted in situ in a scanning electron microscope to detail the failure characteristic of the porous sintered structure. The microscopic fracture toughness of different notched specimens was obtained from the J-integral in the frame of elastic-plastic fracture mechanics. Specimens with deeper notches presented higher resistance to crack extension, while geometry factors of notch-to-width ratio between 0.20 and 0.37 exhibited a relatively stable microscopic fracture toughness ranging from 3.2 ± 0.3 to 3.6 ± 0.1 MPa m1/2.
@enCorrigendum to “Insights into the high-sulphur aging of sintered silver nanoparticles
An experimental and ReaxFF study” [Corros. Sci. 192 (2021) 109846] (Corrosion Science (2021) 192, (S0010938X21006120), (10.1016/j.corsci.2021.109846))
The authors regret that in the above article the Fig. 3 contains an error of cross-section image of group C at 48 h on Page 4. Fig. 3 should read: This correction does not influence the method, results and conclusions of the original article. The authors would like to apologise for any inconvenience caused.
@enDriving by the increased demand for hermetic packaging in the more than Moore (MtM) roadmap, a Cu nanoparticle sintering-enabled hermetic sealing solution was developed with a small-size sealing ring. The developed technology simplifies microfabrication and requires less surface roughness using a sinterable Cu nanoparticle paste. A 50μm size Cu paste sealing ring was achieved using a lithography patterned photoresist as a stencil mask. A groove-structured chip was used to amplify localized stress. The Cu nanoparticle paste was fully sintered at 300 °C under pressure ranging from 10 to 40 MPa resulting in a robust bonding with a maximum shear strength of 280 MPa and implementing hermetic packaging. The deflection of the Si diaphragms estimated a vacuum level of 7 kPa. Vacuum sealing was maintained for over six months, and the lowest leak rate was calculated as 8.4× 10 -13Pa·m 3/s. The developed technology that comprises small-size patterning and pressure-assisted sintering offers the potential for a simple, cost-effective, but robust solution for hermetic packaging.
@enHigh temperature viscoplastic deformation behavior of sintered nanocopper paste used in power electronics packaging
Insights from constitutive and multi-scale modelling
As a promising technology for high-power and high-temperature power electronics packaging, nanocopper (nanoCu) paste sintering has recently received increasing attention as a die-attachment. The high-temperature deformation of sintered nanoCu paste and its underlying mechanisms challenge the reliability of high-power electronics packaging. In this study, the tensile deformation behaviors of sintered nanoCu paste were firstly characterized by high-temperature tensile tests performed at various temperatures and strain rates ranging from 180 °C to 360 °C, 1 × 10−4 s−1 to 1 × 10−3 s−1 respectively. It was found that the elastic modulus and tensile strength decreased at the higher tensile temperature while the ductility increased accordingly. The highest elastic modulus and tensile strength results were 12.15 GPa and 46.97 MPa, respectively. Second, failure analysis was conducted based on the fracture surface after tensile testing. Recrystallization was revealed as the main factor for ductility improvement. Subsequently, an Anand model was fitted by stress-strain curves to describe the tensile constitutive behavior of the sintered nanoCu paste. Multi-scale modelling techniques also investigated the impact of tensile temperature and strain rate on the tensile response. Molecular dynamics simulation was implemented using a hemispherical Cu nanoparticle model to reveal the properties from an atomistic perspective. In addition, a two-dimensional equivalent model was further established by using a stochastically distributed void morphology. The multi-scale modelling techniques successfully describe the evolution of tensile response to the different tensile temperatures and strain rates. Besides, the equivalent model with random void morphology was demonstrated as the finite element simulation results were highly consistent with the high-temperature tensile experiments.
@enAdvances in semiconductor device manufacturing technologies are enabled by the development and application of novel materials. Especially one class of materials, nanoporous films, became building blocks for a broad range of applications, such as gas sensors and interconnects. Therefore, a versatile fabrication technology is needed to integrate these films and meet the trend towards device miniaturization and high integration density. In this study, we developed a novel method to pattern nanoporous thin films with high flexibility in material selection. Herein, Au and ZnO nanoparticles were synthesized by spark ablation and printed on a Ti/TiO2 adhesion layer, which was exposed by a lithographic stencil mask. Subsequently, the photoresist was stripped by a cost-efficient lift-off process. Nanoporous patterned features were thus obtained and the finest feature has a gap width of 0.6 μ fm and a line width of 2 μ fm. Using SEM and profilometers to investigate the structure of the films, it was demonstrated that the lift-off process had a minor impact on the microstructure and thickness. The samples presented a rough surface and high porosity, indicating a large surface-to-volume ratio. This is supported by the measured conductivity of Au nanoporous film, which is 12% of the value for bulk Au. As lithographic stencil printing is compatible with conventional lithographic pattering, this method enables further application on mass production of various nanoporous film-based devices in the future.
@enEffects of temperature and grain size on diffusivity of aluminium
Electromigration experiment and molecular dynamic simulation
Understanding the atomic diffusion features in metallic material is significant to explain the diffusion-controlled physical processes. In this paper, using electromigration experiments and molecular dynamic (MD) simulations, we investigate the effects of grain size and temperature on the self-diffusion of polycrystalline aluminium (Al). The mass transport due to electromigration are accelerated by increasing temperature and decreasing grain size. Magnitudes of effective diffusivity (Deff) and grain boundary diffusivity (DGBs) are experimentally determined, in which theDeffchanges as a function of grain size and temperature, butDGBsis independent of the grain size, only affected by the temperature. Moreover, MD simulations of atomic diffusion in polycrystalline Al demonstrate those observations from experiments. Based on MD results, the Arrhenius equation ofDGBsand empirical formula of the thickness of grain boundaries at various temperatures are obtained. In total,DeffandDGBsobtained in the present study agree with literature results, and a comprehensive result of diffusivities related to the grain size is presented.
@enNano-copper sintering is one of new die-attachment and interconnection solutions to realize the wide bandgap semiconductor power electronics packaging with benefits on high temperature, low inductance, low thermal resistance and low cost. Aiming to assess the high-temperature reliability of sintered nano-copper die-attachment and interconnection, this study characterized the mechanical properties of sintered nano-copper particles using the high-temperature nanoindentation tests. The results showed that: firstly, the hardness and indentation modulus of the sintered nano-copper particles increased rapidly when the loading rate increased below 0.2 mN·s−1 and then stabilized, and decreased with increased applied load up to 30 mN. Next, by extracting the yield stress and strain hardening index, a plastic stress–strain constitutive model at room temperature for sintered nano-copper particles was obtained. Finally, the high temperature nanoindentation tests were performed at 140 ˚C–200 ˚C on the sintered nano-copper particles prepared under different assisted pressures, which showed that a high assisted pressure resulted in the reduced temperature sensitivity of hardness and indentation modulus. The creep tests indicated that high operation temperature resulted in a high steady-state creep rate, which negatively impacted the creep resistance of sintered nano-copper particles, while the higher assisted pressure could improve the creep resistance.
@en