DH

26 records found

Authored

Nano-metal materials have received considerable attention because of their promising performance in wide bandgap semiconductor packaging. In this study, molecular dynamics (MD) simulation was performed to simulate the nano-Cu sintering mechanism and the subsequent mechanical b ...

Driven by the increasing demand for high-power systems, ceramic substrates have received more attention for handling higher power density. Warpage in active metal brazed (AMB) ceramic substrate becomes a critical issue as it can deteriorate the reliability performance. This study ...
The nano-copper particles are widely used in the sintering processes of packaging wide bandgap semiconductors. Despite the significant success in the industry, the mechanism bridging the sintering process to the mechanical properties of sintered nano-copper is not yet well-modele ...

Driving by the increased demand for hermetic packaging in the more than Moore (MtM) roadmap, a Cu nanoparticle sintering-enabled hermetic sealing solution was developed with a small-size sealing ring. The developed technology simplifies microfabrication and requires less surfa ...

The rapid development of power electronics has challenged the thermal integrity of semiconductor packaging. Further developments in this domain can be supported significantly by utilizing fast and flexible thermal characteristic evaluation. This study employs the transient dual i ...

As a promising technology for high-power and high-temperature power electronics packaging, nanocopper (nanoCu) paste sintering has recently received increasing attention as a die-attachment. The high-temperature deformation of sintered nanoCu paste and its underlying mechanism ...

The application of microporous sintered copper (Cu) as a bonding material to replace conventional die-attach materials in power electronic devices has attracted considerable interest. Many previous studies have focused on the effect of processing parameters (temperature, time, pr ...
Nano-metal materials sintering has received increasing attention in recent years for its promising performance in the wide bandgap semiconductor packaging. In this paper, molecular dynamics (MD) simulation method were applied to simulate the nano-Cu sintering mechanism and the su ...
As a critical part of speeding up industrial electrification, power electronics, and its packaging technology are undergoing rapid development. Cu nanoparticle sintering technology has therefore received extensive attention for its excellent performance in the die-attachment laye ...

Effects of temperature and grain size on diffusivity of aluminium

Electromigration experiment and molecular dynamic simulation

Understanding the atomic diffusion features in metallic material is significant to explain the diffusion-controlled physical processes. In this paper, using electromigration experiments and molecular dynamic (MD) simulations, we investigate the effects of grain size and temper ...

Nano-copper sintering is one of new die-attachment and interconnection solutions to realize the wide bandgap semiconductor power electronics packaging with benefits on high temperature, low inductance, low thermal resistance and low cost. Aiming to assess the high-temperature ...

Advances in semiconductor device manufacturing technologies are enabled by the development and application of novel materials. Especially one class of materials, nanoporous films, became building blocks for a broad range of applications, such as gas sensors and interconnects. ...

To meet the requirements of low temperature packaging and high temperature operation for wide bandgap semiconductors, the traditional reflow soldering is gradually substituted by the metallic nanoparticle sintering interconnection. However, the high sintering densification is ...

This paper analyzes the mechanical properties of tungsten disulfide (WS2) by means of multiscale simulation, including density functional theory (DFT), molecular dynamic (MD) analysis, and finite element analysis (FEA). We first conducted MD analysis to calculate the mechanica ...

In high power electronics packaging, sintered silver nanoparticle joints suffer from thermal-humidity- electrical-chemical joint driven corrosion in extreme environments. In this paper, we conducted aging tests on sintered silver nanoparticles under high-temperature, high-humi ...

A micro-scale pressure sensor based on suspended AlGaN/GaN heterostructure is reported with non-linear sensitivity. By sealing the cavity, vacuum sensing at various temperatures was demonstrated. To validate the proposed concept of the AlGaN/GaN vacuum sensor, a 700 µm diameter c ...
A molecular dynamics (MD) simulation was performed on the coalescence kinetics and mechanical behavior of the pressure-assisted Cu nanoparticles (NPs) sintering at low temperature. To investigate the effects of sintering pressure and temperature on the coalescence of the nanopart ...

Contributed

This study deals with the challenge of warpage in power modules, vital components in the rapidly expanding electric and hybrid-electric vehicle industry. The variations in temperature during manufacturing, resulting in significant warpage changes, contribute to device cracks, del ...
Metal oxide nanoparticle gas sensors showpromise due to their high sensitivity towards a wide range of gases, low costs, and low complexity. Particle sizes at nanometers offer a high surface-to-volume ratio which provides more areas on the surface where reactions can occur. This ...
Many semiconductor sensors, particularly MEMS sensors such as inertial, temperature, pressure, and resonance sensors need a vacuum environment for optimal performance and sensitivity in addition to the improvement in their long-term reliability. With the rise of heterogeneous int ...