L.M.K. Vandersypen
172 records found
1
DC-Readout of Semiconductor Spin Qubits
Opportunities and Limits
In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This article introduces a theoretical framework to evaluate the effect of various parameters, such as the readout probe power, readout chain's noise performance, and integration time on the intrinsic readout signal-to-noise ratio, and thus readout fidelity of RF gate-based readout systems. By analyzing the underlying physics of spin qubits during readout, this work proposes a qubit readout model that takes into account the qubit's quantum mechanical properties, providing a way to evaluate the tradeoffs among the aforementioned parameters. The validity of the proposed model is evaluated by comparing the simulation and experimental results. The proposed analytical approach, the developed model, and the experimental results enable designers to optimize the entire readout chain effectively, thus leading to a faster, lower power readout system with integrated cryogenic electronics.
@enThe electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3.14(8) × 105 cm2 V−1 s−1 and low percolation density of 6.9(1) × 1010 cm−2. These low disorder quantum wells support quantum dots with low charge noise of 0.9(3) μeV Hz−1/2 and large mean valley splitting energy of 0.24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.
@enContinuous rounds of quantum error correction (QEC) are essential to achieve faulttolerant quantum computers (QCs). In each QEC cycle, thousands of ancilla quantum bits (qubits) must be read out faster than the qubits' decoherence time (<<T2∗~120μs for spin qubits). To address this urgent need, several CMOS receivers operating at cryogenic temperatures (cryo-CMOS RXs) have recently been introduced for gate-based [1] and RF reflectometry [2] readout of spin qubits, as well as transmons' dispersive readout [3]. However, they have a few shortcomings. First, due to the temperatureindependent shot noise of transistors in nanometer CMOS technology [4], their measured noise temperature (TN) is limited to 40K, thus degrading qubit readout fidelity. Second, due to their large TN, prior art showed either only the electrical performance of their chips by applying a relatively large (i.e., -85dBm [2]) modulated signal directly to the RX input [2,3] or offered limited qubit measurements by exploiting a HEMT amplifier prior to the RX [1]. Those issues hinder future monolithic integration between solid-state qubits and readout electronics. This work advances the prior art by (1) introducing a wideband passive amplification circuit at the RX front-end to minimize the shot noise contribution of the active devices, lowering prior art TN by ~2.7x; (2) demonstrating the RX performance in an RF-reflectometry qubit readout scheme without using off-the-shelf LNA prior to the RX.
@enQuantum systems with engineered Hamiltonians can be used to study many-body physics problems to provide insights beyond the capabilities of classical computers. Semiconductor gate-defined quantum dot arrays have emerged as a versatile platform for realizing generalized Fermi-Hubbard physics, one of the richest playgrounds in condensed matter physics. In this work, we employ a germanium 4×2 quantum dot array and show that the naturally occurring long-range Coulomb interaction can lead to exciton formation and transport. We tune the quantum dot ladder into two capacitively coupled channels and exploit Coulomb drag to probe the binding of electrons and holes. Specifically, we shuttle an electron through one leg of the ladder and observe that a hole is dragged along in the second leg under the right conditions. This corresponds to a transition from single-electron transport in one leg to exciton transport along the ladder. Our work paves the way for the study of excitonic states of matter in quantum dot arrays.
@enDirect interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator. This separation is several orders of magnitude larger than for the commonly used direct interaction mechanisms in this platform. We operate the system in a regime in which the resonator mediates a spin–spin coupling through virtual photons. We report the anti-phase oscillations of the populations of the two spins with controllable frequency. The observations are consistent with iSWAP oscillations of the spin qubits, and suggest that entangling operations are possible in 10 ns. These results hold promise for scalable networks of spin qubit modules on a chip.
@enWe report observations of transitions between excited states in the Jaynes-Cummings ladder of circuit quantum electrodynamics with electron spins (spin circuit QED). We show that unexplained features in recent experimental work correspond to such transitions and present an input-output framework that includes these effects. In new experiments, we first reproduce previous observations and then reveal both excited-state transitions and multiphoton transitions by increasing the probe power and using two-tone spectroscopy. This ability to probe the Jaynes-Cummings ladder is enabled by improvements in the coupling-to-decoherence ratio, and shows an increase in the maturity of spin circuit QED as an interesting platform for studying quantum phenomena.
@enMicromagnet-based electric dipole spin resonance offers an attractive path for the near-term scaling of dense arrays of silicon spin qubits in gate-defined quantum dots while maintaining long coherence times and high control fidelities. However, accurately controlling dense arrays of qubits using a multiplexed drive will require an understanding of the cross-talk mechanisms that may reduce operational fidelity. We identify an unexpected cross-talk mechanism whereby the Rabi frequency of a driven qubit is drastically changed when the drive of an adjacent qubit is turned on. These observations raise important considerations for scaling single-qubit control.
@enHotter is Easier
Unexpected Temperature Dependence of Spin Qubit Frequencies
As spin-based quantum processors grow in size and complexity, maintaining high fidelities and minimizing crosstalk will be essential for the successful implementation of quantum algorithms and error-correction protocols. In particular, recent experiments have highlighted pernicious transient qubit frequency shifts associated with microwave qubit driving. Work-Arounds for small devices, including prepulsing with an off-resonant microwave burst to bring a device to a steady state, wait times prior to measurement, and qubit-specific calibrations all bode ill for device scalability. Here, we make substantial progress in understanding and overcoming this effect. We report a surprising nonmonotonic relation between mixing chamber temperature and spin Larmor frequency which is consistent with observed frequency shifts induced by microwave and baseband control signals. We find that purposefully operating the device at 200 mK greatly suppresses the adverse heating effect while not compromising qubit coherence or single-qubit fidelity benchmarks. Furthermore, systematic non-Markovian crosstalk is greatly reduced. Our results provide a straightforward means of improving the quality of multispin control while simplifying calibration procedures for future spin-based quantum processors.
@enSemiconductor spin qubits have gained increasing attention as a possible platform to host a fault-tolerant quantum computer. First demonstrations of spin qubit arrays have been shown in a wide variety of semiconductor materials. The highest performance for spin qubit logic has been realized in silicon, but scaling silicon quantum dot arrays in two dimensions has proven to be challenging. By taking advantage of high-quality heterostructures and carefully designed gate patterns, we are able to form a tunnel coupled 2 × 2 quantum dot array in a 28Si/SiGe heterostructure. We are able to load a single electron in all four quantum dots, thus reaching the (1,1,1,1) charge state. Furthermore, we characterize and control the tunnel coupling between all pairs of dots by measuring polarization lines over a wide range of barrier gate voltages. Tunnel couplings can be tuned from about 30 μ eV up to approximately 400 μ eV . These experiments provide insightful information on how to design 2D quantum dot arrays and constitute a first step toward the operation of spin qubits in 28Si/SiGe quantum dots in two dimensions.
@enSemiconductor spin qubits demonstrated single-qubit gates with fidelities up to 99.9 % benchmarked in the single-qubit subspace. However, tomographic characterizations reveal non-negligible crosstalk errors in a larger space. Additionally, it was long thought that the two-qubit gate performance is limited by charge noise, which couples to the qubits via the exchange interaction. Here, we show that coherent error sources such as a limited bandwidth of the control signals, diabaticity errors, microwave crosstalk, and non-linear transfer functions can equally limit the fidelity. We report a simple theoretical framework for pulse optimization that relates erroneous dynamics to spectral concentration problems and allows for the reuse of existing signal shaping methods on a larger set of gate operations. We apply this framework to common gate operations for spin qubits and show that simple pulse shaping techniques can significantly improve the performance of these gate operations in the presence of such coherent error sources. The methods presented in the paper were used to demonstrate two-qubit gate fidelities with F > 99.5 % in Xue et al (2022 Nature 601 343). We also find that single and two-qubit gates can be optimized using the same pulse shape. We use analytic derivations and numerical simulations to arrive at predicted gate fidelities greater than 99.9% with duration less than, 4 / ( Δ E z ) where Δ E z is the difference in qubit frequencies.
@enCharge noise in the host semiconductor degrades the performance of spin-qubits and poses an obstacle to control large quantum processors. However, it is challenging to engineer the heterogeneous material stack of gate-defined quantum dots to improve charge noise systematically. Here, we address the semiconductor-dielectric interface and the buried quantum well of a 28Si/SiGe heterostructure and show the connection between charge noise, measured locally in quantum dots, and global disorder in the host semiconductor, measured with macroscopic Hall bars. In 5 nm thick 28Si quantum wells, we find that improvements in the scattering properties and uniformity of the two-dimensional electron gas over a 100 mm wafer correspond to a significant reduction in charge noise, with a minimum value of 0.29 ± 0.02 μeV/Hz½ at 1 Hz averaged over several quantum dots. We extrapolate the measured charge noise to simulated dephasing times to CZ-gate fidelities that improve nearly one order of magnitude. These results point to a clean and quiet crystalline environment for integrating long-lived and high-fidelity spin qubits into a larger system.
@enCoherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviate the so-called wiring bottleneck. A promising method of achieving coherent links between distant spin qubits consists of shuttling the spin through an array of quantum dots. Here, we use a linear array of four tunnel-coupled quantum dots in a 28Si/SiGe heterostructure to create a short quantum link. We move an electron spin through the quantum dot array by adjusting the electrochemical potential for each quantum dot sequentially. By pulsing the gates repeatedly, we shuttle an electron forward and backward through the array up to 250 times, which corresponds to a total distance of approximately 80μm. We make an estimate of the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop.
@enThe small footprint of semiconductor qubits is favorable for scalable quantum computing. However, their size also makes them sensitive to their local environment and variations in the gate structure. Currently, each device requires tailored gate voltages to confine a single charge per quantum dot, clearly challenging scalability. Here, we tune these gate voltages and equalize them solely through the temporary application of stress voltages. In a double quantum dot, we reach a stable (1,1) charge state at identical and predetermined plunger gate voltage and for various interdot couplings. Applying our findings, we tune a 2 × 2 quadruple quantum dot such that the (1,1,1,1) charge state is reached when all plunger gates are set to 1 V. The ability to define required gate voltages may relax requirements on control electronics and operations for spin qubit devices, providing means to advance quantum hardware.
@enElectron spins in Si/SiGe quantum wells suffer from nearly degenerate conduction band valleys, which compete with the spin degree of freedom in the formation of qubits. Despite attempts to enhance the valley energy splitting deterministically, by engineering a sharp interface, valley splitting fluctuations remain a serious problem for qubit uniformity, needed to scale up to large quantum processors. Here, we elucidate and statistically predict the valley splitting by the holistic integration of 3D atomic-level properties, theory and transport. We find that the concentration fluctuations of Si and Ge atoms within the 3D landscape of Si/SiGe interfaces can explain the observed large spread of valley splitting from measurements on many quantum dot devices. Against the prevailing belief, we propose to boost these random alloy composition fluctuations by incorporating Ge atoms in the Si quantum well to statistically enhance valley splitting.
@enLong-range interactions play a key role in several phenomena of quantum physics and chemistry. To study these phenomena, analog quantum simulators provide an appealing alternative to classical numerical methods. Gate-defined quantum dots have been established as a platform for quantum simulation, but for those experiments the effect of long-range interactions between the electrons did not play a crucial role. Here we present a detailed experimental characterization of long-range electron-electron interactions in an array of gate-defined semiconductor quantum dots. We demonstrate significant interaction strength among electrons that are separated by up to four sites, and show that our theoretical prediction of the screening effects matches well the experimental results. Based on these findings, we investigate how long-range interactions in quantum dot arrays may be utilized for analog simulations of artificial quantum matter. We numerically show that about ten quantum dots are sufficient to observe binding for a one-dimensional H2-like molecule. These combined experimental and theoretical results pave the way for future quantum simulations with quantum dot arrays and benchmarks of numerical methods in quantum chemistry.
@enFull-scale quantum computers require the integration of millions of qubits, and the potential of using industrial semiconductor manufacturing to meet this need has driven the development of quantum computing in silicon quantum dots. However, fabrication has so far relied on electron-beam lithography and, with a few exceptions, conventional lift-off processes that suffer from low yield and poor uniformity. Here we report quantum dots that are hosted at a 28Si/28SiO2 interface and fabricated in a 300 mm semiconductor manufacturing facility using all-optical lithography and fully industrial processing. With this approach, we achieve nanoscale gate patterns with excellent yield. In the multi-electron regime, the quantum dots allow good tunnel barrier control—a crucial feature for fault-tolerant two-qubit gates. Single-spin qubit operation using magnetic resonance in the few-electron regime reveals relaxation times of over 1 s at 1 T and coherence times of over 3 ms.
@enFuture quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably1. However, the requirements of having a large qubit count and operating with high fidelity are typically conflicting. Spins in semiconductor quantum dots show long-term promise2,3 but demonstrations so far use between one and four qubits and typically optimize the fidelity of either single- or two-qubit operations, or initialization and readout4-11. Here, we increase the number of qubits and simultaneously achieve respectable fidelities for universal operation, state preparation and measurement. We design, fabricate and operate a six-qubit processor with a focus on careful Hamiltonian engineering, on a high level of abstraction to program the quantum circuits, and on efficient background calibration, all of which are essential to achieve high fidelities on this extended system. State preparation combines initialization by measurement and real-time feedback with quantum-non-demolition measurements. These advances will enable testing of increasingly meaningful quantum protocols and constitute a major stepping stone towards large-scale quantum computers.
@en