GK

7 records found

Authored

This paper presents an extensive characterization of the low-frequency noise (LFN) at room temperature (RT) and cryogenic temperature (4.2 K) of 40-nm bulk-CMOS transistors. The noise is measured over a wide range of bias conditions and geometries to generate a comprehensive o ...

This paper presents a floating inverter amplifier (FIA) that performs high-linearity amplification and sampling while driving a 2<inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula> time-interleaved (TI) SAR ADC, operating f ...

This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6-8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multiplexed input in a spin- ...

This paper reports the experimental characterization and modelling of a stand-Alone StrongARM comparator at both room temperature (RT) and cryogenic temperature (4.2 K). The observed 6-dB improvement in the comparator input noise at 4.2 K is attributed to the reduction of the ...

Quantum computers (QCs) promise significant speedup for relevant computational problems that are intractable by classical computers. QCs process information stored in quantum bits (qubits) that must be typically cooled down to cryogenic temperatures. Since state-of-the-art QCs ...

CMOS circuits operating at cryogenic temperature (cryo-CMOS) are required in several lowerature applications. A compelling example is the electronic interface for quantum processors, which must reside very close to the cryogenic quantum devices it serves, and hence operate at ...

Accurate and low-noise generation and amplification of microwave signals are required for the manipulation and readout of quantum bits (qubits). A fault-tolerant quantum computer operates at deep cryogenic temperatures (i.e., <100 mK) and requires thousands of qubits for ru ...