A. Sammak
87 records found
1
Quantum systems with engineered Hamiltonians can be used to study many-body physics problems to provide insights beyond the capabilities of classical computers. Semiconductor gate-defined quantum dot arrays have emerged as a versatile platform for realizing generalized Fermi-Hubbard physics, one of the richest playgrounds in condensed matter physics. In this work, we employ a germanium 4×2 quantum dot array and show that the naturally occurring long-range Coulomb interaction can lead to exciton formation and transport. We tune the quantum dot ladder into two capacitively coupled channels and exploit Coulomb drag to probe the binding of electrons and holes. Specifically, we shuttle an electron through one leg of the ladder and observe that a hole is dragged along in the second leg under the right conditions. This corresponds to a transition from single-electron transport in one leg to exciton transport along the ladder. Our work paves the way for the study of excitonic states of matter in quantum dot arrays.
@enElectrically driven spin resonance is a powerful technique for controlling semiconductor spin qubits. However, it faces challenges in qubit addressability and off-resonance driving in larger systems. We demonstrate coherent bichromatic Rabi control of quantum dot hole spin qubits, offering a spatially selective approach for large qubit arrays. By applying simultaneous microwave bursts to different gate electrodes, we observe multichromatic resonance lines and resonance anticrossings that are caused by the ac Stark shift. Our theoretical framework aligns with experimental data, highlighting interdot motion as the dominant mechanism for bichromatic driving.
@enGate-defined quantum dots define an attractive platform for quantum computation and have been used to confine individual charges in a planar array. Here, we demonstrate control over vertical double quantum dots confined in a strained germanium double quantum well. We sense individual charge transitions with a single-hole transistor. The vertical separation between the quantum wells provides a sufficient difference in capacitive coupling to distinguish quantum dots located in the top and bottom quantum wells. Tuning the vertical double quantum dot to the (1,1) charge state confines a single-hole in each quantum well beneath a single plunger gate. By simultaneously accumulating holes under two neighboring plunger gates, we are able to tune to the (1,1,1,1) charge state. These results motivate quantum dot systems that exploit the third dimension, opening new opportunities for quantum simulation and quantum computing.
@enSilicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer owing to their compatibility with semiconductor manufacturing technologies. Recent experiments in this system have demonstrated crucial technologies, including high-fidelity quantum gates and multiqubit operation. However, the realization of a fault-tolerant quantum computer requires a high-fidelity spin measurement faster than decoherence. To address this challenge, we characterize and optimize the initialization and measurement procedures using the parity-mode Pauli spin blockade technique. Here, we demonstrate a rapid (with a duration of a few μs) and accurate (with >99% fidelity) parity spin measurement in a silicon double quantum dot. These results represent a significant step forward toward implementing measurement-based quantum error correction in silicon.
@enThe electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3.14(8) × 105 cm2 V−1 s−1 and low percolation density of 6.9(1) × 1010 cm−2. These low disorder quantum wells support quantum dots with low charge noise of 0.9(3) μeV Hz−1/2 and large mean valley splitting energy of 0.24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.
@enQubits that can be efficiently controlled are essential for the development of scalable quantum hardware. Although resonant control is used to execute high-fidelity quantum gates, the scalability is challenged by the integration of high-frequency oscillating signals, qubit cross-talk, and heating. Here, we show that by engineering the hopping of spins between quantum dots with a site-dependent spin quantization axis, quantum control can be established with discrete signals. We demonstrate hopping-based quantum logic and obtain single-qubit gate fidelities of 99.97%, coherent shuttling fidelities of 99.992% per hop, and a two-qubit gate fidelity of 99.3%, corresponding to error rates that have been predicted to allow for quantum error correction. We also show that hopping spins constitute a tuning method by statistically mapping the coherence of a 10-quantum dot system. Our results show that dense quantum dot arrays with sparse occupation could be developed for efficient and high-connectivity qubit registers.
@enBecause of their long coherence time and compatibility with industrial foundry processes, electron spin qubits are a promising platform for scalable quantum processors. A full-fledged quantum computer will need quantum error correction, which requires high-fidelity quantum gates. Analyzing and mitigating gate errors are useful to improve gate fidelity. Here, we demonstrate a simple yet reliable calibration procedure for a high-fidelity controlled-rotation gate in an exchange-always-on Silicon quantum processor, allowing operation above the fault-tolerance threshold of quantum error correction. We find that the fidelity of our uncalibrated controlled-rotation gate is limited by coherent errors in the form of controlled phases and present a method to measure and correct these phase errors. We then verify the improvement in our gate fidelities by randomized benchmark and gate-set tomography protocols. Finally, we use our phase correction protocol to implement a virtual, high-fidelity, controlled-phase gate.
@enDirect interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator. This separation is several orders of magnitude larger than for the commonly used direct interaction mechanisms in this platform. We operate the system in a regime in which the resonator mediates a spin–spin coupling through virtual photons. We report the anti-phase oscillations of the populations of the two spins with controllable frequency. The observations are consistent with iSWAP oscillations of the spin qubits, and suggest that entangling operations are possible in 10 ns. These results hold promise for scalable networks of spin qubit modules on a chip.
@enPractical Quantum computing hinges on the ability to control large numbers of qubits with high fidelity. Quantum dots define a promising platform due to their compatibility with semiconductor manufacturing. Moreover, high-fidelity operations above 99.9% have been realized with individual qubits, though their performance has been limited to 98.67% when driving two qubits simultaneously. Here we present single-qubit randomized benchmarking in a two-dimensional array of spin qubits, finding native gate fidelities as high as 99.992(1)%. Furthermore, we benchmark single qubit gate performance while simultaneously driving two and four qubits, utilizing a novel benchmarking technique called N-copy randomized benchmarking, designed for simple experimental implementation and accurate simultaneous gate fidelity estimation. We find two- and four-copy randomized benchmarking fidelities of 99.905(8)% and 99.34(4)% respectively, and that next-nearest neighbor pairs are highly robust to cross-talk errors. These characterizations of single-qubit gate quality are crucial for scaling up quantum information technology.
@enWe detect correlations in qubit-energy fluctuations of non-neighboring qubits defined in isotopically purified Si/Si-Ge quantum dots. At low frequencies (where the noise is strongest), the correlation coefficient reaches 10% for a next-nearest-neighbor qubit-pair separated by 200 nm. Correlations with the charge-sensor signal reach up to 70%, proving that the observed noise is of electrical origin. A simple theoretical model quantitatively reproduces the measurements and predicts a polynomial decay of correlations with interqubit distance. Our results quantify long-range correlations of noise in quantum-dot spin-qubit arrays, essential for their scalability and fault tolerance.
@enMicromagnet-based electric dipole spin resonance offers an attractive path for the near-term scaling of dense arrays of silicon spin qubits in gate-defined quantum dots while maintaining long coherence times and high control fidelities. However, accurately controlling dense arrays of qubits using a multiplexed drive will require an understanding of the cross-talk mechanisms that may reduce operational fidelity. We identify an unexpected cross-talk mechanism whereby the Rabi frequency of a driven qubit is drastically changed when the drive of an adjacent qubit is turned on. These observations raise important considerations for scaling single-qubit control.
@enThe efficient control of a large number of qubits is one of the most challenging aspects for practical quantum computing. Current approaches in solid-state quantum technology are based on brute-force methods, where each and every qubit requires at least one unique control line—an approach that will become unsustainable when scaling to the required millions of qubits. Here, inspired by random-access architectures in classical electronics, we introduce the shared control of semiconductor quantum dots to efficiently operate a two-dimensional crossbar array in planar germanium. We tune the entire array, comprising 16 quantum dots, to the few-hole regime. We then confine an odd number of holes in each site to isolate an unpaired spin per dot. Moving forward, we demonstrate on a vertical and a horizontal double quantum dot a method for the selective control of the interdot coupling and achieve a tunnel coupling tunability over more than 10 GHz. The operation of a quantum electronic device with fewer control terminals than tunable experimental parameters represents a compelling step forward in the construction of scalable quantum technology.
@enThe small footprint of semiconductor qubits is favorable for scalable quantum computing. However, their size also makes them sensitive to their local environment and variations in the gate structure. Currently, each device requires tailored gate voltages to confine a single charge per quantum dot, clearly challenging scalability. Here, we tune these gate voltages and equalize them solely through the temporary application of stress voltages. In a double quantum dot, we reach a stable (1,1) charge state at identical and predetermined plunger gate voltage and for various interdot couplings. Applying our findings, we tune a 2 × 2 quadruple quantum dot such that the (1,1,1,1) charge state is reached when all plunger gates are set to 1 V. The ability to define required gate voltages may relax requirements on control electronics and operations for spin qubit devices, providing means to advance quantum hardware.
@enSemiconductor spin qubits have gained increasing attention as a possible platform to host a fault-tolerant quantum computer. First demonstrations of spin qubit arrays have been shown in a wide variety of semiconductor materials. The highest performance for spin qubit logic has been realized in silicon, but scaling silicon quantum dot arrays in two dimensions has proven to be challenging. By taking advantage of high-quality heterostructures and carefully designed gate patterns, we are able to form a tunnel coupled 2 × 2 quantum dot array in a 28Si/SiGe heterostructure. We are able to load a single electron in all four quantum dots, thus reaching the (1,1,1,1) charge state. Furthermore, we characterize and control the tunnel coupling between all pairs of dots by measuring polarization lines over a wide range of barrier gate voltages. Tunnel couplings can be tuned from about 30 μ eV up to approximately 400 μ eV . These experiments provide insightful information on how to design 2D quantum dot arrays and constitute a first step toward the operation of spin qubits in 28Si/SiGe quantum dots in two dimensions.
@enHighly uniform quantum systems are essential for the practical implementation of scalable quantum processors. While quantum dot spin qubits based on semiconductor technology are a promising platform for large-scale quantum computing, their small size makes them particularly sensitive to their local environment. Here, we present a method to electrically obtain a high degree of uniformity in the intrinsic potential landscape using hysteretic shifts of the gate voltage characteristics. We demonstrate the tuning of pinch-off voltages in quantum dot devices over hundreds of millivolts that then remain stable at least for hours. Applying our method, we homogenize the pinch-off voltages of the plunger gates in a linear array for four quantum dots, reducing the spread in pinch-off voltages by one order of magnitude. This work provides a new tool for the tuning of quantum dot devices and offers new perspectives for the implementation of scalable spin qubit arrays.
@enThe co-integration of spin, superconducting, and topological systems is emerging as an exciting pathway for scalable and high-fidelity quantum information technology. High-mobility planar germanium is a front-runner semiconductor for building quantum processors with spin-qubits, but progress with hybrid superconductor-semiconductor devices is hindered by the difficulty in obtaining a superconducting hard gap, that is, a gap free of subgap states. Here, we address this challenge by developing a low-disorder, oxide-free interface between high-mobility planar germanium and a germanosilicide parent superconductor. This superconducting contact is formed by the thermally-activated solid phase reaction between a metal, platinum, and the Ge/SiGe semiconductor heterostructure. Electrical characterization reveals near-unity transparency in Josephson junctions and, importantly, a hard induced superconducting gap in quantum point contacts. Furthermore, we demonstrate phase control of a Josephson junction and study transport in a gated two-dimensional superconductor-semiconductor array towards scalable architectures. These results expand the quantum technology toolbox in germanium and provide new avenues for exploring monolithic superconductor-semiconductor quantum circuits towards scalable quantum information processing.
@enSimulations using highly tunable quantum systems may enable investigations of condensed matter systems beyond the capabilities of classical computers. Quantum dots and donors in semiconductor technology define a natural approach to implement quantum simulation. Several material platforms have been used to study interacting charge states, while gallium arsenide has also been used to investigate spin evolution. However, decoherence remains a key challenge in simulating coherent quantum dynamics. Here, we introduce quantum simulation using hole spins in germanium quantum dots. We demonstrate extensive and coherent control enabling the tuning of multi-spin states in isolated, paired, and fully coupled quantum dots. We then focus on the simulation of resonating valence bonds and measure the evolution between singlet product states which remains coherent over many periods. Finally, we realize four-spin states with s-wave and d-wave symmetry. These results provide means to perform non-trivial and coherent simulations of correlated electron systems.
@en