G. Scappucci
88 records found
1
This article presents a family of sub-1-V, fully-CMOS voltage references adopting MOS devices in weak inversion to achieve continuous operation from room temperature (RT) down to cryogenic temperatures. Their accuracy limitations due to curvature, body effect, and mismatch are in
...
Quantum links can interconnect qubit registers and are therefore essential in networked quantum computing. Semiconductor quantum dot qubits have seen significant progress in the high-fidelity operation of small qubit registers but establishing a compelling quantum link remains a
...
Because of their long coherence time and compatibility with industrial foundry processes, electron spin qubits are a promising platform for scalable quantum processors. A full-fledged quantum computer will need quantum error correction, which requires high-fidelity quantum gates.
...
The coherent control of interacting spins in semiconductor quantum dots is of strong interest for quantum information processing and for studying quantum magnetism from the bottom up. Here we present a 2 × 4 germanium quantum dot array with full and controllable interactions betw
...
Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer owing to their compatibility with semiconductor manufacturing technologies. Recent experiments in this system have demonstrated crucial technologies, including high-fidelity quantum g
...
Continuous rounds of quantum error correction (QEC) are essential to achieve faulttolerant quantum computers (QCs). In each QEC cycle, thousands of ancilla quantum bits (qubits) must be read out faster than the qubits' decoherence time (<<T2∗~120μs for spin qubits). To addr
...
Gate-defined quantum dots define an attractive platform for quantum computation and have been used to confine individual charges in a planar array. Here, we demonstrate control over vertical double quantum dots confined in a strained germanium double quantum well. We sense indivi
...
Electrically driven spin resonance is a powerful technique for controlling semiconductor spin qubits. However, it faces challenges in qubit addressability and off-resonance driving in larger systems. We demonstrate coherent bichromatic Rabi control of quantum dot hole spin qubits
...
Qubits that can be efficiently controlled are essential for the development of scalable quantum hardware. Although resonant control is used to execute high-fidelity quantum gates, the scalability is challenged by the integration of high-frequency oscillating signals, qubit cross-
...
Hole-based spin qubits in strained planar germanium quantum wells have received considerable attention due to their favorable properties and remarkable experimental progress. The sizeable spin-orbit interaction in this structure allows for efficient qubit operations with electric
...
The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are co
...
Quantum systems with engineered Hamiltonians can be used to study many-body physics problems to provide insights beyond the capabilities of classical computers. Semiconductor gate-defined quantum dot arrays have emerged as a versatile platform for realizing generalized Fermi-Hubb
...
The efficient control of a large number of qubits is one of the most challenging aspects for practical quantum computing. Current approaches in solid-state quantum technology are based on brute-force methods, where each and every qubit requires at least one unique control line—an
...
Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which
...
Silicon/silicon-germanium heterostructures have many important advantages for hosting spin qubits. However, controlling the valley splitting (the energy splitting between the two low-lying conduction-band valleys) remains a critical challenge for ensuring qubit reliability. Broad
...
A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows re
...
Highly uniform quantum systems are essential for the practical implementation of scalable quantum processors. While quantum dot spin qubits based on semiconductor technology are a promising platform for large-scale quantum computing, their small size makes them particularly sensi
...
We detect correlations in qubit-energy fluctuations of non-neighboring qubits defined in isotopically purified Si/Si-Ge quantum dots. At low frequencies (where the noise is strongest), the correlation coefficient reaches 10% for a next-nearest-neighbor qubit-pair separated by 200
...
The co-integration of spin, superconducting, and topological systems is emerging as an exciting pathway for scalable and high-fidelity quantum information technology. High-mobility planar germanium is a front-runner semiconductor for building quantum processors with spin-qubits,
...
Semiconductor spin qubits have gained increasing attention as a possible platform to host a fault-tolerant quantum computer. First demonstrations of spin qubit arrays have been shown in a wide variety of semiconductor materials. The highest performance for spin qubit logic has be
...