Cv

C.J. van Diepen

9 records found

Quantum systems with engineered Hamiltonians can be used to study many-body physics problems to provide insights beyond the capabilities of classical computers. Semiconductor gate-defined quantum dot arrays have emerged as a versatile platform for realizing generalized Fermi-Hubb ...
Long-range interactions play a key role in several phenomena of quantum physics and chemistry. To study these phenomena, analog quantum simulators provide an appealing alternative to classical numerical methods. Gate-defined quantum dots have been established as a platform for qu ...
Quantum-mechanical correlations of interacting fermions result in the emergence of exotic phases. Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model, where charges are localized and the spin degree of freedom remains. In this regime, the occur ...
More is more applies in particular to systems with interacting parts. These interactions enable the emergence of collective behaviour. Examples can be found among the behaviour of animals, such as the V-shaped formation of migrating geese and the flight of a flock of starlings. M ...
The spin of a single electron in a semiconductor quantum dot provides a well-controlled and long-lived qubit implementation. The electron charge in turn allows control of the position of individual electrons in a quantum dot array, and enables charge sensors to probe the charge c ...
Electrostatically-defined semiconductor quantum dot arrays offer a promising platform for quantum computation and quantum simulation. However, crosstalk of gate voltages to dot potentials and interdot tunnel couplings complicates the tuning of the device parameters. To date, cros ...
Electrostatically defined quantum dot arrays offer a compelling platform for quantum computation and simulation. However, tuning up such arrays with existing techniques becomes impractical when going beyond a handful of quantum dots. Here, we present a method for systematically a ...
Semiconductor quantum dot arrays defined electrostatically in a 2D electron gas provide a scalable platform for quantum information processing and quantum simulations. For the operation of quantum dot arrays, appropriate voltages need to be applied to the gate electrodes that def ...
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlyin ...