PS

769 records found

Correction to

Highly-sensitive wafer-scale transfer-free graphene MEMS condenser microphones (Microsystems & Nanoengineering, (2024), 10, 1, (27), 10.1038/s41378-024-00656-x)

Correction to: Microsystems & Nanoengineering https://doi.org/10.1038/s41378-024-00656-x published online 21 February 2024 After publication of this article1, it was brought to our attention that two pressure values were not correctly copied from the submitted orig ...
Micro-physiological systems (MPS) hold the potential for advancing drug research by emulating realistic in vitro human (patho)physiology models. These systems replicate organ microenvironments, delivering stimuli similar to those experienced by organs in vivo. Active biomechanica ...
Ionic FETs have enormous potential for energy conversion, sensing, and ionic circuits due to their efficient regulation of the nanochannel. Here ionic FETs based on single-crystal silicon nanopores and the rectification of the fabricated devices are studied. The electrical charac ...
Since the performance of micro-electro-mechanical system (MEMS)-based microphones is approaching fundamental physical, design, and material limits, it has become challenging to improve them. Several works have demonstrated graphene’s suitability as a microphone diaphragm. The pot ...
As a consequence of their high strength, small thickness, and high flexibility, ultrathin graphene membranes show great potential for pressure and sound sensing applications. This study investigates the performance of multi-layer graphene membranes for microphone applications in ...
We present a novel capacitive displacement sensor integrated in an engineered heart tissue (EHT) platform to measure tissue contractile properties in-situ. Co-planar spiral capacitors were integrated into the elastomeric substrate underneath the two micropillars of a previously d ...

Erratum

Electrical characteristics and photodetection mechanism of TiO2/AlGaN/GaN heterostructure-based ultraviolet detectors with a Schottky junction (J. Mater. Chem. C (2023) 11 (1704–1713) DOI: 10.1039/D2TC04491A)

The authors regret an error in the abstract of the published article: the text ‘‘(i) the Schottky emission mechanism at a low reverse voltage (0–1 V) before the current is fully turned on.’’ should be changed to ‘‘(i) the Schottky emission mechanism at a low reverse voltage (0 to ...

Correction

Study on the controllability of the fabrication of single-crystal silicon nanopores/nanoslits with a fast-stop ionic current-monitored TSWE method (Microsystems & Nanoengineering, (2023), 9, 1, (63), 10.1038/s41378-023-00532-0)

Correction to: Microsystems & Nanoengineering published online 16 May 2023 Correction Following publication of the original article1, it was noticed that the phrase ‘DNA sequencing’ is incorrect, which should be replaced by ‘biosensing’. The original paper has been ...
Ionic polymer metal composites (IPMCs) are a class of materials with a rising appeal in biological micro-electromechanical systems (bio-MEMS) due to their unique properties (low voltage output, bio-compatibility, affinity with ionic medium). While tailoring and improving actuatio ...
Thermal noise is a major obstacle to observing quantum behavior in macroscopic systems. To mitigate its effect, quantum optomechanical experiments are typically performed in a cryogenic environment. However, this condition represents a considerable complication in the transition ...
The next generation of satellites will need to tackle tomorrow's challenges for communication, navigation and observation. In order to do so, it is expected that the amount of satellites in orbit will keep increasing, form smart constellations and miniaturize individual satellite ...
The application of single-crystal silicon (SCS) nanopore structures in single-molecule-based analytical devices is an emerging approach for the separation and analysis of nanoparticles. The key challenge is to fabricate individual SCS nanopores with precise sizes in a controllabl ...
A repeatable method to fabricate multi-layer graphene (ML-gr) membranes of 2r = 85 - 155 μm (t < 10 nm) with a 100% yield on 100 mm wafers is demonstrated. These membranes show higher sensitivity than a commercial MEMS-Mic combined with an area reduction of 10x. The process ov ...
We present a novel design of elastic micropillars for tissue self-assembly in engineered heart tissue (EHT) platforms. The innovative tapered profile confines reproducibly the tissue position along the main micropillar axis, increasing the accuracy of tissue contraction force mea ...
Microphysiological systems consisting of multiple cell types of the human heart have been shown to recapitulate certain aspects of human physiology better than conventional 2D in vitro models [1]. Engineered heart tissues (EHTs) that self-organise into contractile 3D structures b ...
In this work, we present an Opto-Electro-Mechanical Modulator (OEMM) for RF-to-optical transduction realized via an ultra-coherent nanomembrane resonator capacitively coupled to an rf injection circuit made of a microfabricated read-out able to improve the electro-optomechanical ...
Human heart tissues grown as three-dimensional spheroids and consisting of different cardiac cell types derived from pluripotent stem cells (hiPSCs) recapitulate aspects of human physiology better than standard two-dimensional models in vitro. They typically consist of less than ...
In this work we demonstrate that ultra-thin (5 and 15 nm) MgO transmission dynodes with sufficient high transmission electron yield (TEY) can be constructed. These transmission dynodes act as electron amplification stages in a novel vacuum electron multiplier: the Timed Photon Co ...
Continuous monitoring of tissue microphysiology is a key enabling feature of the organ-on-chip (OoC) approach for in vitro drug screening and disease modeling. Integrated sensing units are particularly convenient for microenvironmental monitoring. However, sensitive in vitro and ...