AT
A.M.M.G. Theulings
8 records found
1
In this work we demonstrate that ultra-thin (5 and 15 nm) MgO transmission dynodes with sufficient high transmission electron yield (TEY) can be constructed. These transmission dynodes act as electron amplification stages in a novel vacuum electron multiplier: the Timed Photon Co
...
The effect of doping in Si3N4 membranes on the secondary electron yield is investigated using Monte Carlo simulations of the electron-matter interactions. The effect of the concentration and the distribution of the doping in silicon rich silicon nitride membranes is studied by us
...
Large-area transmission dynodes were fabricated by depositing an ultra-thin continuous film on a silicon wafer with a 3-dimensional pattern. After removing the silicon, a corrugated membrane with enhanced mechanical properties was formed. Mechanical metamaterials, such as this co
...
The (secondary) electron emission from multilayered Al2O3/TiN membranes has been investigated with a hemispherical collector system in a scanning electron microscope for electrons with energies between 0.3 and 10 keV. These ultra-thin membranes are designed to function as transmi
...
The object of this thesis work was to develop a (Monte Carlo) simulation package that can be used to aid in the design of the Timed Photon Counter (TiPC). The TiPC is a single photon detector whose working principle is based upon the multiplication of an electron signal by transm
...
The Tynode
A new vacuum electron multiplier
By placing, in vacuum, a stack of transmission dynodes (tynodes) on top of a CMOS pixel chip, a single free electron detector could be made with outstanding performance in terms of spatial and time resolution. The essential object is the tynode: an ultra thin membrane, which emit
...
With a miniaturised stack of transmission dynodes, a noise free amplifier is being developed for the detection of single free electrons, with excellent time- and 2D spatial resolution and efficiency. With this generic technology, a new family of detectors for individual elementar
...