TE

Tobias Erlbacher

8 records found

Authored

In this work, a highly linear temperature sensor based on a silicon carbide (SiC) p-n diode is presented. Under a constant current biasing, the diode has an excellent linear response to the temperature (from room temperature to 600°C). The best linearity (coefficient of determ ...

The 4H-silicon carbide (SiC) exhibits excellent material characteristics, particularly in high-temperature, high-power, high-frequency applications. However, the reliability of SiC-based devices operating in harsh environments is a critical concern. While time-dependent dielectri ...
This paper presents p-n diode temperature sensors and MOSFET temperature sensors in low-voltage silicon carbide (SiC) CMOS technology. The reported temperature sensors directly make use of the existing doping layers in the CMOS process, thus enabling the monolithic integration of ...

The next generation of satellites will need to tackle tomorrow's challenges for communication, navigation and observation. In order to do so, it is expected that the amount of satellites in orbit will keep increasing, form smart constellations and miniaturize individual satell ...

This work demonstrates the first on-chip UV optoelectronic integration in 4H-SiC CMOS, which includes an image sensor with 64 active pixels and a total of 1263 transistors on a 100 mm2 chip. The reported image sensor offers serial digital, analog, and 2-bit ADC outputs and operat ...

The wide bandgap of silicon carbide (SiC) has attracted a large interest over the past years in many research fields, such as power electronics, high operation temperature circuits, harsh environmental sensing, and more. To facilitate research on complex integrated SiC circuit ...

In this paper, we present a quadrant sun position sensor microsystem device in a silicon carbide technology that operates in a field-of-view of ±33° and reaches a mean error of 1.9° in this range. This will allow, for the first time, an inherently visible blind sun position senso ...
Accurately sensing the temperature in silicon carbide (power) devices is of great importance to their reliable operation. Here, temperature sensors by resistive and CMOS structures are fabricated and characterized in an open silicon carbide CMOS technology. Over a range of 25-200 ...