MW

M. Wiendels

5 records found

Authored

We present a novel capacitive displacement sensor integrated in an engineered heart tissue (EHT) platform to measure tissue contractile properties in-situ. Co-planar spiral capacitors were integrated into the elastomeric substrate underneath the two micropillars of a previously d ...
Microphysiological systems consisting of multiple cell types of the human heart have been shown to recapitulate certain aspects of human physiology better than conventional 2D in vitro models [1]. Engineered heart tissues (EHTs) that self-organise into contractile 3D structures b ...
We present a novel design of elastic micropillars for tissue self-assembly in engineered heart tissue (EHT) platforms. The innovative tapered profile confines reproducibly the tissue position along the main micropillar axis, increasing the accuracy of tissue contraction force mea ...

Human heart tissues grown as three-dimensional spheroids and consisting of different cardiac cell types derived from pluripotent stem cells (hiPSCs) recapitulate aspects of human physiology better than standard two-dimensional models in vitro. They typically consist of less th ...

Engineered heart tissues (EHTs) showed great potential in recapitulating tissue organization and function of the human heart in vitro [1]. Contractile kinetics is one key hallmark of cardiac tissue function and maturation level of cardiomyocytes, and a critical readout from EHT p ...