B. Šavija
230 records found
1
...
Auxetic cementitious cellular composites (ACCCs) possess advantageous mechanical properties in static tests, such as high fracture resistance and efficient energy dissipation. However, little attention has been given to understanding the impact resistance of ACCCs. In this study,
...
Circulating fluidized bed fly ash (CFBFA) is a by-product from the combustion in circulating fluidized bed boiler in power plants. Herein, to resourcefully utilize CFBFA and reduce cement consumption, the CFBFA was ground (GCFBFA) and used to prepare low-carbon lightweight foamed
...
The microstructure of cement paste determines the overall performance of concrete and therefore obtaining the microstructure is an essential step in concrete studies. Traditional methods to obtain the microstructure, such as scanning electron microscopy (SEM) and X-ray computed t
...
Filament stitching
An architected printing strategy to mitigate anisotropy in 3D-Printed engineered cementitious composites (ECC)
Anisotropy in 3D-printed concrete structures has persistently raised concerns regarding structural integrity and safety. In this study, an architected 3D printing strategy, “stitching”, was proposed to mitigate anisotropy in 3D-printed Engineered Cementitious Composites (ECC). Th
...
The use of 3D printed polymers in the form of lattice reinforcement can enhance the mechanical properties of cementitious composites. Methods like Fused Deposition Modelling (FDM) 3D printing enable their creation, but this process has a large (negative) effect on their mechanica
...
When serving in the marine environment, reinforced concrete structures are prone to be attacked by chloride ingress, which generally co-occurs with varying humidity and temperature changes. Therefore, considering the interaction between moisture transport and heat transfer, and t
...
Herein, a three-dimensional numerical model based on computational fluid dynamics (CFD) for fresh concrete is developed to predict the slump and slump flow. Fresh concrete is considered as a non-Newtonian fluid, and its rheological behaviour is characterised by the Bingham and He
...
This paper aims to improve the activity of high-calcium fly ash (FA) by using a wet carbonation treatment process. The results indicated that carbonation products, i.e. calcite, were attached to the surface of FA, which accelerated cement hydration primarily at the early stage. S
...
Cement-based materials (CBMs) are multiscale composites whose macroscopic properties largely depend on their micro/nanoscale features. Micro and nanomechanical properties of CBMs are typically characterized using local techniques such as nanoindentation. Compared with nanoindenta
...
Temperature Stress Testing Machine (TSTM) is a universal testing tool for many properties relevant to early-age cracking of cementitious materials. However, the complexity of TSTMs require heavy lab work and thus hinders a more thorough parametric study on a range of cementitious
...
Cenospheres are low-density and hollow microspheres derived from coal-fired power plant fly ash waste. This study aims to prepare ultra-light-weight (<1000 kg/m3 wet density) concrete using fly ash cenospheres (FAC). To begin with, FAC's shell thickness and the wate
...
Self-healing concrete using encapsulated healing agent has shown great potential in enhancing concrete durability. However, the capsules are expensive to make and can lower the mechanical properties of concrete. In this study, a new type of manufactured aggregate that employs was
...
One particularly interesting class of mechanical metamaterials are those having a negative Poisson's ratio, which are referred to as ‘auxetics’. Because of their geometrical complexity, auxetic designs cannot always be easily created. However, Additive Manufacturing (AM) methods
...
3D printed polymeric reinforcement has been found able to improve the ductility of cementitious materials. However, due to the hydrophobic nature of commonly used 3D printing polymers, the bonding strength between the 3D printed polymers and cementitious matrix is extremely weak,
...
Vascular self-healing concrete (SHC) has great potential to mitigate the environmental impact of the construction industry by increasing the durability of structures. Designing concrete with high initial mechanical properties by searching a specific arrangement of vascular struct
...
Decarbonizing the cement industry
Findings from coupling prospective life cycle assessment of clinker with integrated assessment model scenarios
In the race to achieve global climate neutrality, carbon intensive industries like the clinker and cement industry are required to decarbonize rapidly. The environmental impacts related to potential transition pathways to low-carbon systems can be evaluated using prospective life
...
Autogenous deformation-induced stress evolution in cementitious materials considering viscoelastic properties
A review of experiments and models
Early-age cracking risk induced by autogenous deformation is high for cementitious materials of low water-binder ratios. The autogenous deformation, viscoelastic properties, and stress evolution are three important factors for understanding and quantifying the early-age cracking
...
The production of low-emission additive manufactured cementitious composites using functionalized rock powders offers promising mechanical properties and significantly reduces cement consumption. The effect of powder functionalization on the rheological properties of the mixture
...
3D printed concrete (3DPC) creates opportunities, including a reduction in construction waste and time and increased design freedom. However, because of the differences in the construction technique compared to traditional concrete casting, the structures also perform differently
...
Auxetic cementitious cellular composites (ACCCs) exhibit desirable mechanical properties (e.g., high fracture resistance and energy dissipation), due to their unique deformation characteristics. In this study, a new type of cementitious auxetic material, referred to as peanut sha
...