K. van Breugel
579 records found
1
...
This study employs a lattice fracture model to simulate static and fatigue fracture behaviour of Interfacial Transition Zone (ITZ) at microscale and mortar at mesoscale. The heterogeneous microstructure of ITZ and mesostructure of mortar are explicitly considered in the models. T
...
This paper presents an experimental study on the interface bonding properties of polyvinyl alcohol (PVA) fiber in alkali-activated slag/fly ash (AASF) pastes. Three interface bonding properties (i.e., the chemical bonding energy Gd, the initial frictional bond strength τ0, and sl
...
In this study, the flexural strength and fatigue properties of interfacial transition zone (ITZ) were experimentally investigated at the micrometre length scale. The hardened cement paste cantilevers (150 × 150 × 750 μm3) attached to a quartzite aggregate surface were
...
Thermal deformation and stress of alkali-activated slag concrete under semi-adiabatic condition
Experiments and simulations
This study investigates the deformation of free and stress of restrained alkali-activated slag concrete (AASC), respectively, under semi-adiabatic condition. The concrete shows first thermal expansion, which is compensated soon by autogenous shrinkage. The subsequent cooling down
...
This paper presents a method to numerically investigate the microstructural effect on the creep behavior of cement paste at the microscale. The lattice fracture model is extended to consider local time-dependent deformations of calcium-silicate-hydrate phases in the cement paste
...
This study presents an experimental investigation of fatigue properties of cement paste at the microscale. A strong size dependence is found for the flexural fatigue life of the cement paste specimen. Microscopic observations on the fractured surfaces suggest that there is a high
...
In this study, a numerical model using a 2D lattice network is developed to investigate the fatigue behaviour of cement paste at the microscale. Images of 2D microstructures of cement pastes obtained from XCT tests are used as inputs and mapped to the lattice model. Different loc
...
This study presents an experimental investigation of the rate-dependent mechanical properties of cement paste at the microscale. With the use of a nanoindenter, micro-cantilever beams with the size of 300 μm × 300 μm × 1650 μm were loaded at five different strain rates from aroun
...
This paper presents an experimental investigation on the short-term creep recovery of cement paste at micrometre length scale. Micro-cantilever beams were fabricated and tested with 8 different loading series using the nanoindenter. It is found that cement pastes show high recove
...
This study proposes an experimental method for studying the short-term creep behaviour of cement paste at micro-scale. The micro-bending tests on miniaturized cantilever beams were used to characterize the viscoelastic properties of cement paste. The effects of w/b ratio, the typ
...
In recent decades, several simulation models have been proposed to predict autogenous shrinkage of cementitious systems. In most of these models, however, only the elastic deformation caused by self-desiccation of the hydrating cement paste is considered. In fact, cement paste is
...
In this work, findings of a numerical study performed to investigate the impact behavior of porous concrete, modeled as a four phase cementitious composite consisting of aggregates, cement paste, interfacial transition zones (ITZ) and air, are presented. The numerical analyses co
...
Infrastructure is ageing and we are facing a serious challenge on how to deal with it. One possible solution is to repair it, but the life of current concrete repairs, including all types of repairs and application of different materials, is not satisfactory and there is an urgen
...
Nanoindentation is usually used to investigate local elastic properties and hardness of materials. In this paper, the nanoindenter served as a loading tool to perform micro scale bending tests and measure the global response of micro-scale specimens. For testing, cement paste can
...
Determination of chloride content in cement-based materials
Comparison of results derived by conventional methods and chloride sensor readings
In this paper the potentiometric response of a Ag/AgCl electrode as a chloride sensor in cementitious materials of different mix design was studied. The chloride sensor’s response was discussed with respect to the presence of hydration products around the sensor. The free chlorid
...
This study presents the numerical analyses conducted to investigate the impact behavior of different porous concretes, which have also been cast and tested experimentally. For a realistic representation of the real porous concretes containing arbitrary shaped air pores, a mesh ge
...
The world’s infrastructure is vital for providing accommodation and mobility for people. Although it is obvious that the construction industry has been crucial for realizing building and civil infrastructures, it is also clear that building activities have a big impact on the env
...
In this work, the different techniques for non-destructive in situ measurement of chloride ion concentration are presented. Non-destructive (ND) in situ measurement is crucial for reliable and continuous determination of chloride ion concentration in concrete. Over the last 20 ye
...
The stability and reproducibility of an Ag/AgCl sensors’ response in an alkaline medium are important for the application of these sensors in cementitious materials. The sensors’ response, or their open circuit potential (OCP), reflects a dynamic equilibrium at the sensor/environ
...