YX

49 records found

Authored

In this work, the lattice model is applied to study the printing process and quantify the buildability (i.e., the maximum height that can be printed) for 3D concrete printing (3DCP). The model simulates structural failure by incorporating an element birth technique, time-depen ...

Cementitious materials are widely used in construction. For their low ductility, they typically need to be reinforced by steel rebars, which cause potential corrosion problems. Polymeric reinforcement, which does not have corrosion problems, has been used to replace steel reba ...

Application of micromechanical modelling of hydrated cement paste (HCP) gains more and more interests in the field of cementitious materials. One of the most promising approaches is the use of so-called microstructure informed micromechanical models, which provides a direct li ...

This paper presents a validation process of the developed multi-scale modelling scheme on mortar composites. Special attention was paid to make the material structure of real and virtual mortar specimens comparable at the meso-scale. The input mechanical parameters of cement past ...
Auxetic behavior refers to material with negative Poisson's ratio. In this research, a new type of cementitious auxetic material is developed. A novel crack bridging auxetic mechanism is discovered which is in contrast with a local buckling mechanism commonly employed to trigger ...

This research presents an investigation of the compressive behavior of auxetic cementitious cellular composites (CCCs) using a combination of experiments and finite element (FE) simulations. Typical auxetic centrosymmetric geometry was used as unit cells for the cellular struc ...

Mechanical behavior of cementitious cellular composites (CCC) with auxetic behavior was investigated under uniaxial compression and cyclic loading. Three cellular structures with different geometrical parameters are designed and prepared by 3D printing technique. Meanwhile, pl ...

Door toepassing van 3D-printtechnieken kunnen cementgebonden materialen worden ontwikkeld met een bijzondere, niet-homogene interne structuur. Deze materialen kunnen auxetisch gedrag vertonen: ze zetten zijdelings uit (worden dikker) wanneer ze worden uitgerekt en ze trekken zijd ...

Extrusion based additive manufacturing of cementitious materials has demonstrated strong potential to become widely used in the construction industry. However, the use of this technique in practice is conditioned by a feasible solution to implement reinforcement in such automa ...

Strain hardening cementitious composites are a class of cementitious materials showing metal-like (i.e. pseudo-plastic) behavior in tension due to their multiple cracking ability. This is commonly achieved through use of fiber reinforcement (such as PVA) or, similarly, textile re ...

The aim of this work is to predict the micromechanical properties of interfacial transition zone (ITZ) by combining experimental and numerical approaches. In the experimental part, hardened cement paste (HCP) cantilevers (200 μm × 100 μm × 100 μm) attached to a quartzite aggre ...

Cracking in concrete needs to be limited for esthetical and durability reasons. Currently, this is commonly done by using steel rebars in the structure or fiber reinforcement in the material. With certain fiber types and micromechanical design, it is even possible to create cemen ...
Traditionally, mechanical properties of cementitious materials are designed “chemically”, namely by configuring their mix proportions. Owning to the development of 3D printing technology, “physical” tailoring the meso-structure of cementitious materials to design their mechanical ...

New additive manufacturing methods for cementitious materials hold a high potential to increase automation in the construction industry. However, these methods require new materials to be developed that meet performance requirements related to specific characteristics of the m ...

The aim of this work is to investigate the mechanical performance of hardened cement paste (HCP) under compression at the micrometre length scale. In order to achieve this, both experimental and numerical approaches were applied. In the experimental part, micrometre sized HCP ...

Soft inclusions, such as capsules and other particulate admixtures are increasingly being used in cementitious materials for functional purposes (i.e. self-healing and self-sensing of concrete). Yet, their influence on the fracture behaviour of the material is sometimes overlooke ...

A method is presented to model deformation and fracture behavior of 3D printed disordered lattice materials under uniaxial tensile load. A lattice model was used to predict crack pattern and load-displacement response of the printed lattice materials. To include the influence ...

Frost action is the major threat against durability of concrete under cold region. Surface scaling and internal damage are the two main deterioration phenomenon caused by frost action. Nowadays, there is still a debate about whether surface scaling and internal damage caused by t ...
In order to improve the behaviour of cementitious material under in bending, 3D printed polymeric lattice meshes were used as an alternative to fibre reinforcement. Lattice meshes with different cell sizes and different surface roughness were designed and printed. Plain mortar sa ...
Cement paste possesses complex microstructural features including defects/pores over a range of length-scales, from nanometres to millimetres in size. As a consequence, it exhibits different behaviour under loading depending on the size. In this work, cubic specimens in a size ra ...