ML
M. Liang
38 records found
1
Tensile behavior of rebar-reinforced coarse aggregate ultra-high performance concrete (R-CA-UHPC) members
Experiments and restrained shrinkage creep effect
Rebar-reinforced coarse aggregate ultra-high-performance concrete (R-CA-UHPC) has been used in the construction of new structures and strengthening of deteriorated aged infrastructures, and it inevitably sustains tension. To study the tensile behavior of R-CA-UHPC members, axial
...
This study employs a lattice fracture model to simulate static and fatigue fracture behaviour of Interfacial Transition Zone (ITZ) at microscale and mortar at mesoscale. The heterogeneous microstructure of ITZ and mesostructure of mortar are explicitly considered in the models. T
...
Carbonation of alkali-activated slag (AAS) materials has been primarily concerned in atmospheres with gaseous CO2. This study, by contrast, highlights that AAS pastes would also be carbonated under tap water immersion. Calcite is the main CO2-bear phase in b
...
Autogenous deformation-induced stress evolution in cementitious materials considering viscoelastic properties
A review of experiments and models
Early-age cracking risk induced by autogenous deformation is high for cementitious materials of low water-binder ratios. The autogenous deformation, viscoelastic properties, and stress evolution are three important factors for understanding and quantifying the early-age cracking
...
Monitoring of gradual increase in elastic modulus of concrete over time is crucial for designing structures exposed to early age loading and predicting long-term deformations, such as creep. Two primary methods are used to assess elastic modulus: the static method, involving comp
...
Stress Evolution in Early-Age Cementitious Materials Considering Autogenous Deformation and Creep
New experimental and modelling techniques
Since the introduction of cementitious materials, shrinkage-induced earlyage cracking (EAC) has emerged as a significant issue that negatively influences the function, durability, and aesthetics of concrete structures like dams, tunnels, and underground garages. This thesis aims
...
Temperature Stress Testing Machine (TSTM) is a universal testing tool for many properties relevant to early-age cracking of cementitious materials. However, the complexity of TSTMs require heavy lab work and thus hinders a more thorough parametric study on a range of cementitious
...
This study presents comprehensive numerical modeling methods for simulating early-age stress (EAS) relaxation in cementitious materials, based on the autogenous deformation (AD), elastic modulus, creep, and stress continuously tested by a mini temperature stress testing machine (
...
Vascular self-healing concrete (SHC) has great potential to mitigate the environmental impact of the construction industry by increasing the durability of structures. Designing concrete with high initial mechanical properties by searching a specific arrangement of vascular struct
...
This paper presents a comprehensive investigation on the positive potential of steel slag (SS) to mitigate the autogenous shrinkage of alkali-activated slag (AAS) while maintaining a reasonably high strength. Changes of the physicochemical properties of AAS with the addition of S
...
Auxetic cementitious cellular composites (ACCCs) exhibit desirable mechanical properties (e.g., high fracture resistance and energy dissipation), due to their unique deformation characteristics. In this study, a new type of cementitious auxetic material, referred to as peanut sha
...
The properties of the interfacial transition zone (ITZ) between microfiber and cement-based matrix are of primary significance for the overall behavior of strain hardening cementitious composites (SHCCs). However, due to the relatively small diameter of polymeric microfibers (e.g
...
Limestone-calcined clay-cement (LC3), as one of the most promising sustainable cements, has been under development over the past decade. However, many uncertainties remain regarding its rheological behaviors, such as the metakaolin content of calcined clay. This study aims to inv
...
We propose a new numerical method to analyze the early-age creep of 3D printed segments with the consideration of stress history. The integral creep strain evaluation formula is first expressed in a summation form using superposition principle. The experimentally derived creep co
...
Early-age creep of 3D printable mortar
Experiments and analytical modelling
In this study, an experimental setup to characterize the early-age creep of 3D printable mortar was proposed. The testing protocol comprises quasi-static compressive loading-unloading cycles, with 180-s holding periods in between. An analytical model based on a double power law w
...
This study investigates the microstructural changes of cement paste due to the inclusion of polymeric microfiber at different water-to-cement (w/c) ratios. A procedure to quantify the porosity of epoxy impregnated interfacial transition zone (ITZ) is also presented. Results show
...
Stress evolution of restrained concrete is directly related to early-age cracking (EAC) potential of concrete, which is a tricky problem that often happens in engineering practice. Due to the global objective of carbon reduction, Ground granulated blast furnace slag (GGBFS) concr
...
Large errors can be introduced in traditional acoustic emission (AE) source localization methods using extracted signal features such as arrival time difference. This issue is obvious in the case of irregular structural geometries, complex composite structure types or presence of
...
Autogenous deformation induced- stress evolution in high-volume GGBFS concrete
Macro-scale behavior and micro-scale origin
This study aims to experimentally investigate the autogenous deformation and the stress evolution in restrained high-volume ground granulated blast furnace slag (GGBFS) concrete. The Temperature Stress Testing Machine (TSTM) and Autogenous Deformation Testing Machine (ADTM) were
...
Cementitious materials may exhibit significant creep at very early age. This is potentially important for concrete 3D printing, where the material is progressively loaded even before it sets. However, does creep actually affect the buildability of 3D printed concrete? Herein, the
...