AM

A. Mavinkurve

17 records found

Authored

Semiconductor devices are commonly encapsulated with Epoxy-based Moulding Compounds (EMC) to form an electronic package. EMC typically occupies a large volume within a package, and thus, governs its thermomechanical behaviour. When exposed to high temperatures (150°C and above), ...

The risk of corrosion poses a challenge to meet the stringent reliability requirements of microelectronic devices that are used in harsh environments. Microelectronic devices are often encapsulated in polymer packaging materials, which protect them from corrosion. These polyme ...

Epoxy Mold Compounds (EMC) are used to protect integrated circuits (IC) from environmental influences, with one of these influences being moisture ingress, causing corrosion. To obtain the needed thermal and mechanical properties EMCs require a high loading of (silica) fillers ...

The reliability of LEDs decreases in moist environments. One potential gateway of moisture ingress, reducing the product lifetime is the lens. In white LEDs, phosphor particles are embedded into the optical silicone of the lens to convert the blue light emitted by the diode down ...

Tarnishing of the reflective silver layer in LED packages is an important failure mechanism, leading to both a decrease in luminous flux by up to 75% and a change in color spectrum.

@en
We present a time-dependent numerical model for corrosion in microelectronics, focusing on aluminum bondpads, which can be very beneficial for the design as well as the interpretation of reliability data of microelectronics. The model includes charge transport through the polymer ...
Despite extensive research over the past decades, corrosion of aluminum bond pads is still a major reliability risk for plastic encapsulated microelectronics. Nowadays even an increase in susceptibility for corrosion is observed for new waferfab technologies and encapsulation mat ...
Plastic encapsulations will absorb moisture in humid environments due to their hydrophilic nature, this in combination with the inherent ionic contamination of the plastic will result in an electrolyte. This electrolyte might pose several reliability issues for the package and th ...
In this paper, the interaction between chip and package is investigated with the focus on low ppm-level failures. More specifically, the failure mode of inter-metal shorts is investigated, caused by either electrical discharges (ESD) or internal/external mechanical forces. It is ...
When high electrical fields are applied, and especially above the glass transition temperature, ion transport through the epoxy molding compounds that encapsulate the integrated circuit (die) strongly increases, leading to the accumulation of charge at the passivation-epoxy inter ...
The supply current of plastic encapsulated microelectronic devices in the presence of a high potential source can increase abnormally due to parasitic gate leakage. According to reliability qualification standards, stress during a parasitic gate leakage test is applied by a coron ...
To efficiently select qualification and reliability monitoring programs, structural similarity rules for Integrated Circuit designs, wafer fabrication processes and/or package designs are currently used by the industry. By following the package structural similarity rules, the nu ...