JC

23 records found

Achieving high degree of tunability in photonic devices has been a focal point in the field of integrated photonics for several decades, enabling a wide range of applications from telecommunication and biochemical sensing to fundamental quantum photonic experiments. We introduce ...

Broadband, High-Reflectivity Dielectric Mirrors at Wafer Scale

Combining Photonic Crystal and Metasurface Architectures for Advanced Lightsails

Highly ambitious initiatives aspire to propel a miniature spacecraft to a neighboring star within a human generation, leveraging the radiation pressure of lasers for propulsion. One major challenge for this enormous feat is to build a meter-scale, ultralow mass lightsail with bro ...
Since their first demonstration in 2001 [Gol’tsman et al., Appl. Phys. Lett. 79, 705-707 (2001)], superconducting-nanowire single-photon detectors (SNSPDs) have witnessed two decades of great developments. SNSPDs are the detector of choice in most modern quantum optics experiment ...
The terahertz frequency region of the electromagnetic spectrum is crucial for understanding the formation and evolution of galaxies and stars throughout the universe's history, as well as the process of planet formation. Detecting the unique spectral signatures of molecules and a ...
Preparing a massive mechanical resonator in a state with quantum limited motional energy provides a promising platform for studying fundamental physics with macroscopic systems and allows to realize a variety of applications, including precise sensing. While several demonstration ...
Superconducting nanowire single-photon detectors (SNSPDs) show near unity efficiency, low dark count rate, and short recovery time. Combining these characteristics with temporal control of SNSPDs broadens their applications as in active de-latching for higher dynamic range counti ...
Integrated photonic platforms have proliferated in recent years, each demonstrating its unique strengths and shortcomings. Given the processing incompatibilities of different platforms, a formidable challenge in the field of integrated photonics still remains for combining the st ...
At the core of quantum photonic information processing and sensing, two major building pillars are single-photon emitters and single-photon detectors. In this review, we systematically summarize the working theory, material platform, fabrication process, and game-changing applica ...
As a two-dimensional planar material with low depth profile, a metasurface can generate non-classical phase distributions for the transmitted and reflected electromagnetic waves at its interface. Thus, it offers more flexibility to control the wave front. A traditional metasurfac ...
3D Cf/SiC–Al composites were achieved through the pressure infiltration of liquid Al–Si alloy into porous 3D Cf/SiC preform, which was produced by different cycles of precursor infiltration and pyrolysis. The effect of silicon carbide volume fraction on the ...
Ultra-high system detection efficiency (SDE) s uperconducting nanowire single-photon detectors are demonstrated for a broad range of wavelengths, from UV to mid-infrared, opening novel possibilities in the fields of quantum photonics, neuroimaging and astronomy.@en
Shortly after their inception, superconducting nanowire single-photon detectors (SNSPDs) became the leading quantum light detection technology. With the capability of detecting single-photons with near-unity efficiency, high time resolution, low dark count rate, and fast recovery ...
We have demonstrated a low noise superconducting MgB2 hot electron bolometer (HEB) mixer working at the frequency of 5.3 terahertz (THz) with 20 K operation temperature. The bolometer consists of a 7 nm thick MgB2 submicrometer bridge contacted with a spiral antenna to couple THz ...
In the past decades, generating single photons on demand with well defined quantum states and detecting them after photon-photon or photon-matter interaction are central to the area of quantum optics and quantum information science. The ability to detect light efficiently at the ...

Superconducting nanowire single-photon detectors

A perspective on evolution, state-of-the-art, future developments, and applications

Two decades after their demonstration, superconducting nanowire single-photon detectors (SNSPDs) have become indispensable tools for quantum photonics as well as for many other photon-starved applications. This invention has not only led to a burgeoning academic field with a wide ...
Single photon detectors are indispensable tools in optics, from fundamental measurements to quantum information processing. The ability of superconducting nanowire single photon detectors (SNSPDs) to detect single photons with unprecedented efficiency, short dead time, and high t ...
A broad range of scientific and industrial disciplines require precise optical measurements at very low light levels. Single-photon detectors combining high efficiency and high time resolution are pivotal in such experiments. By using relatively thick films of NbTiN (8-11 nm) and ...
Superconducting Nanowire Single Photon Detectors (SNSPDs) based on Nb0.15Re0.85 disordered nanowires are developed. The devices have a meander structure of wires 50 - 100 nm wide and cover a circular detection area with a diameter of about 10-16 μm. The main figures of merit of t ...
In the past decade, superconducting nanowire single-photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs have been coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown prom ...