S. Groeblacher
61 records found
1
Optomechanical systems using a membrane-in-the-middle configuration can exhibit a long-range type of interaction similar to how atoms show collective motion in an optical potential. Photons bounce back and forth inside a high-finesse Fabry-Pérot cavity and mediate the interaction
...
Integrated photonic circuits have transformed data communication, biosensing, and light detection and ranging and hold wide-ranging potential for optical computing, optical imaging, and signal processing. These applications often require tunable and reconfigurable photonic compon
...
Microwave-optics entanglement plays a crucial role in building hybrid quantum networks with quantum nodes working in the microwave and optical frequency bands. However, there are limited efficient ways to produce such entanglement due to the large frequency mismatch between the t
...
In the past decade, lithium niobate (LiNbO3 or LN) photonics, thanks to its heat-free and fast electro-optical modulation, second-order non-linearities, and low-loss, has been extensively investigated. Despite numerous demonstrations of high-performance LN photonics, p
...
In recent years, nanomechanical oscillators in thin films of superfluid helium have attracted attention in the field of optomechanics due to their exceptionally low mechanical dissipation and optical scattering. Mechanical excitations in superfluid thin films - so-called third so
...
We present our optimized diamond fabrication process based on quasi-isotropic crystal-plane-dependent reactive-ion-etching at low and high temperature plasma regime. We demonstrate successful integration of SnV centers in diamond waveguides showing quantum non-linear effects. We
...
Broadband, High-Reflectivity Dielectric Mirrors at Wafer Scale
Combining Photonic Crystal and Metasurface Architectures for Advanced Lightsails
Highly ambitious initiatives aspire to propel a miniature spacecraft to a neighboring star within a human generation, leveraging the radiation pressure of lasers for propulsion. One major challenge for this enormous feat is to build a meter-scale, ultralow mass lightsail with bro
...
Mechanical frequency combs are poised to bring the applications and utility of optical frequency combs into the mechanical domain. So far, their main challenge has been strict requirements on drive frequencies and power, which complicate operation. We demonstrate a straightforwar
...
As a two-dimensional planar material with low depth profile, a metasurface can generate non-classical phase distributions for the transmitted and reflected electromagnetic waves at its interface. Thus, it offers more flexibility to control the wave front. A traditional metasurfac
...
Lithium niobate (LNO) is a well established material for surface acoustic wave (SAW) devices including resonators, delay lines and filters. Recently, multi-layer substrates based on LNO thin films have become commercially available. Here, we present a systematic low-temperature s
...
The coherent transduction of information between microwave and optical domains is a fundamental building block for future quantum networks. A promising way to bridge these widely different frequencies is using high-frequency nanomechanical resonators interacting with low-loss opt
...
Microwave-optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a f
...
In this work, we study the effects of mechanical anisotropy in a 2D optomechanical crystal geometry. We fabricate and measure devices with different orientations, showing the dependence of the mechanical spectrum and the optomechanical coupling on the relative angle of the device
...
We demonstrate dissipative optomechanical transduction and backaction in coupled nanobeams. Compared to previous demonstrations, our system corresponds to a hundredfold increase in mechanical frequency and displays a record-high dissipative optomechanical coupling.@en
We present a homodyne detection scheme to reliably measure the dissipative coupling in optomechanical systems. Our method is validated on silicon devices yielding GKe/GΩ= -0.007 ± 0.001.@en
Single quantum emitters embedded in solid-state hosts are an ideal platform for realizing quantum information processors and quantum network nodes. Among the currently investigated candidates, Er3+ ions are particularly appealing due to their 1.5 μm optical transition in the tele
...
Integrated photonic platforms have proliferated in recent years, each demonstrating its unique strengths and shortcomings. Given the processing incompatibilities of different platforms, a formidable challenge in the field of integrated photonics still remains for combining the st
...
Magnetic imaging with nitrogen-vacancy (NV) spins in diamond is becoming an established tool for studying nanoscale physics in condensed matter systems. However, the optical access required for NV spin readout remains an important hurdle for operation in challenging environments
...
Mechanical resonators that possess coupled modes with harmonic frequency relations have recently sparked interest due to their suitability for controllable energy transfer and non-Hermitian dynamics. Here we show coupling between high-𝑄-factor (greater than 104) resonances with a
...
Preparing a massive mechanical resonator in a state with quantum limited motional energy provides a promising platform for studying fundamental physics with macroscopic systems and allows to realize a variety of applications, including precise sensing. While several demonstration
...