RN

53 records found

Authored

Spiderweb Nanomechanical Resonators via Bayesian Optimization

Inspired by Nature and Guided by Machine Learning

From ultrasensitive detectors of fundamental forces to quantum networks and sensors, mechanical resonators are enabling next-generation technologies to operate in room-temperature environments. Currently, silicon nitride nanoresonators stand as a leading microchip platform in ...

Conversion between signals in the microwave and optical domains is of great interest both for classical telecommunication and for connecting future superconducting quantum computers into a global quantum network. For quantum applications, the conversion has to be efficient, as ...

We will use Fisher information to properly analyze the quantum weak equivalence principle. We argue that gravitational waves will be partially reflected by superconductors. This will occur as the violation of the weak equivalence principle in Cooper pairs is larger than the surro ...
We present coherent conversion between microwave and optical signals with
an electro-optomechanical device close to its quantum groundstate, such that less than a single quantum of noise is added to the converted signal.@en
Brownian thermal noise is a severe limitation for the sensitivity of many optomechanical high-precision measurement systems. To push the sensitivity limit it is essential to quantify how device geometry and material properties affect thermal noise. As an important building block ...

We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of ...

Preparing mechanical systems in their lowest possible entropy state, the quantum ground state, starting from a room temperature environment is a key challenge in quantum optomechanics. This would not only enable creating quantum states of truly macroscopic systems, but at the ...

Optical levitation of dielectric particles is a promising platform for room temperature quantum optomechanics. The challenge is to control the mechanical motion at the Heisenberg uncertainty limit. We present a nanophotonic interface enabling strong and efficient measurements. ...

Quantum control of levitated dielectric particles is an emerging subject in quantum optomechanics. A major challenge is to efficiently measure and manipulate the particle’s motion at the Heisenberg uncertainty limit. Here we present a nanophotonic interface suited to address t ...

We fabricate photonic crystal SiN membranes with reflectivity > 99.9% at 1550 nm. These form a platform for studying arrays of mechanical oscillators inside optical cavities, which can potentially reach strong single-photon optomechanical coupling.@en

Multielement cavity optomechanics constitutes a direction to observe novel effects with mechanical resonators. Several exciting ideas include superradiance, increased optomechanical coupling, and quantum effects between distinct mechanical modes among others. Realizing these e ...

Several experimental demonstrations of the Casimir force between two closely spaced bodies have been realized over the past two decades. Extending the theory to incorporate the behavior of the force between two superconducting films close to their transition temperature has re ...

Mechanical oscillators are at the heart of many sensor applications. Recently several groups have developed oscillators that are probed optically, fabricated from high-stress silicon nitride films. They exhibit outstanding force sensitivities of a few aN/Hz1/2 and can also be mad ...
Nano- and micromechanical solid-state quantum devices have become a focus of attention. Reliably generating nonclassical states of their motion is of interest both for addressing fundamental questions about macroscopic quantum phenomena and for developing quantum technologies in ...
All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical qu ...

Contributed

Vibration energy harvesters are especially interesting to use in an environment where there is one dominant vibration frequency present because then the harvesters can be designed to resonate at that specific frequency. To spread out the power yield over more frequencies a multi- ...
In pursuit of extremely sensitive sensors, the dimensions of these sensors get smaller and smaller. Small scale resonators are commonly used as sensors by relating changes in the dynamic behaviour to a sensed quantity. Conventionally, the dynamics used for sensing are in the line ...
The exceptional material properties of bulk diamond like high stiffness, high thermal conductivity, wide optical transparency, chemical inertness and bio-compatibility make it the material of choice in many high-end applications. Most present-day diamond micro-devices are fabrica ...