Av

383 records found

In additive manufacturing, the fabrication sequence has a large influence on the quality of manufactured components. While planning of the fabrication sequence is typically performed after the component has been designed, recent developments have demonstrated the possibility and ...
In topology optimization of transient problems, memory requirements and computational costs often become prohibitively large due to the backward-in-time adjoint equations. Common approaches such as the Checkpointing (CP) and Local-in-Time (LT) algorithms reduce memory requirement ...
Inorganic scintillators often use exotic, expensive materials to increase their light yield. Although material chemistry is a valid way to increase the light collection, these methods are expensive and limited to the material properties. As such, alternative methods such as the u ...

Enhancing the cooling performance of thermocouples

A power-constrained topology optimization procedure

Heat pumping through thermoelectric devices has many advantages over traditional cooling. However, their current efficiency is a limiting factor in their implementation. In this paper, we approach the non-convex topology optimization of thermoelectrical elements for cooling appli ...
Wire and Arc Additive Manufacturing (WAAM) has great potential for efficiently producing large metallic components. However, like other additive manufacturing techniques, materials processed by WAAM exhibit anisotropic properties. Assuming isotropic material properties in design ...
Phononic crystals can be designed to show band gaps—ranges of frequencies whose propagation is strongly attenuated in the material. In essence, their working principle is based on destructive interference of waves reflecting from the periodic arrangement of material interfaces (i ...
In recent years, the Q-factor of Si 3 N 4 nanomechanical resonators has significantly been increased by soft-clamping techniques using large and complex support structures. To date, however, obtaining similar performance with smaller supports has remained a challenge. Here, we ma ...
The design of high-performance mechatronic systems is very challenging, as it requires delicate balancing of system dynamics, the controller, and their closed-loop interaction. Topology optimization provides an automated way to obtain systems with superior performance, although e ...
Additive manufacturing of metal parts involves phase transformations and high temperature gradients which lead to uneven thermal expansion and contraction, and, consequently, distortion of the fabricated components. The distortion has a great influence on the structural performan ...
Modeling of fluid flows in density-based topology optimization forms a longstanding challenge. Methods based on the Navier–Stokes equations with Darcy penalization (NSDP equations) are widely used in fluid topology optimization. These methods use porous materials with low permeab ...
Overheating is a major issue especially in metal Additive Manufacturing (AM) processes, leading to poor surface quality, lack of dimensional precision, inferior performance and/or build failures. A 3D density-based topology optimization (TO) method is presented which addresses th ...
High computational costs are encountered in topology optimization problems of geometrically nonlinear structures since intensive use has to be made of incremental-iterative finite element simulations. To alleviate this computational intensity, reduced-order models (ROMs) are expl ...
The published article contains a mistake in the notation of the strain–displacement matrix (Formula presented.) in Voigt notation concerning the isoparametric mapping and in the notation of the corresponding derivatives. As the mistakes relate only to the notation, and the implem ...
Computational process modelling of metal additive manufacturing has gained significant research attention in recent past. The cornerstone of many process models is the transient thermal response during the AM process. Since deposition-scale modelling of the thermal conditions in ...
A novel constraint to prevent local overheating is presented for use in topology optimization (TO). The very basis for the constraint is the Additive Manufacturing (AM) process physics. AM enables fabrication of highly complex topologically optimized designs. However, local overh ...
A remarkable elastic anisotropy in plates of austenitic stainless steel produced by the Wire and Arc Additive Manufacturing process is recently reported. The Young's modulus depends on the angle of orientation with respect to the material deposition direction. Here, for the first ...
Topology optimization typically generates designs that exhibit significant geometrical complexity, which can pose difficulties for manufacturing and assembly. The number of occurrences of an important design feature, in particular intersections, increases with geometrical complex ...
In this paper, a novel alternative method of stiffness compensation in buckled mechanisms is investigated. This method involves the use of critical load matching, i.e., matching the first two buckling loads of a mechanism. An analytical simply supported five-bar linkage model con ...
High-tech equipment critically relies on flexures for precise manipulation and measurement. Through elastic deformation, flexures offer extreme position repeatability within a limited range of motion in their degrees of freedom, while constraining motion in the degrees of constra ...