In topology optimization of transient problems, memory requirements and computational costs often become prohibitively large due to the backward-in-time adjoint equations. Common approaches such as the Checkpointing (CP) and Local-in-Time (LT) algorithms reduce memory requirement
...
In topology optimization of transient problems, memory requirements and computational costs often become prohibitively large due to the backward-in-time adjoint equations. Common approaches such as the Checkpointing (CP) and Local-in-Time (LT) algorithms reduce memory requirements by dividing the temporal domain into intervals and by computing sensitivities on one interval at a time. The CP algorithm reduces memory by recomputing state solutions instead of storing them. This leads to a significant increase in computational cost. The LT algorithm introduces approximations in the adjoint solution to reduce memory requirements and leads to a minimal increase in computational effort. However, we show that convergence can be hampered using the LT algorithm due to errors in approximate adjoints. To reduce memory and/or computational time, we present two novel algorithms. The hybrid Checkpointing/Local-in-Time (CP/LT) algorithm improves the convergence behavior of the LT algorithm at the cost of an increased computational time but remains more efficient than the CP algorithm. The Parallel-Local-in-Time (PLT) algorithm reduces the computational time through a temporal parallelization in which state and adjoint equations are solved simultaneously on multiple intervals. State and adjoint fields converge concurrently with the design. The effectiveness of each approach is illustrated with two-dimensional density-based topology optimization problems involving transient thermal or flow physics. Compared to the other discussed algorithms, we found a significant decrease in computational time for the PLT algorithm. Moreover, we show that under certain conditions, due to the use of approximations in the LT and PLT algorithms, they exhibit a bias toward designs with short characteristic times. Finally, based on the required memory reduction, computational cost, and convergence behavior of optimization problems, guidelines are provided for selecting the appropriate algorithms.
@en