Large, deterministic and tunable thermo-optic shift for all photonic platforms

More Info
expand_more

Abstract

Achieving high degree of tunability in photonic devices has been a focal point in the field of integrated photonics for several decades, enabling a wide range of applications from telecommunication and biochemical sensing to fundamental quantum photonic experiments. We introduce a novel technique to engineer the thermal response of photonic devices resulting in large and deterministic wavelength shifts across various photonic platforms, such as amorphous Silicon Carbide (a-SiC), Silicon Nitride (SiN) and Silicon-On-Insulator (SOI). In this paper, we demonstrate bi-directional thermal tuning of photonic devices fabricated on a single chip. Our method can be used to design high-sensitivity photonic temperature sensors, low-power Mach-Zehnder interferometers and more complex photonics circuits.

Files

130120M.pdf
(pdf | 0.787 Mb)
Unknown license