WE

37 records found

Authored

We use the electrodeless time-resolved microwave conductivity (TRMC) technique to characterize spin-crossover (SCO) nanoparticles. We show that TRMC is a simple and accurate means for simultaneously assessing the magnetic state of SCO compounds and charge transport information ...

Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating ...

The processes that govern radiative recombination in ternary CuInS2 (CIS) nanocrystals (NCs) have been heavily debated, but recently, several research groups have come to the same conclusion that a photoexcited electron recombines with a localized hole on a Cu-relat ...

Carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well ...

Carrier multiplication is a process in which one absorbed photon excites two or more electrons. This is of great promise to increase the efficiency of photovoltaic devices. Until now, the factors that determine the onset energy of carrier multiplication have not been convincin ...

Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient h ...

Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse application ...

Indium antimonide (InSb) quantum dots (QDs) have unique and interesting photophysical properties, but widespread experimentation with InSb QDs is lacking due to the difficulty in synthesizing this material. The key experimental challenge in fabricating InSb QDs is preparing a ...

Self-assembled nanocrystal solids show promise as a versatile platform for novel optoelectronic materials. Superlattices composed of a single layer of lead-chalcogenide and cadmium-chalcogenide nanocrystals with epitaxial connections between the nanocrystals, present outstandi ...

Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (vary ...

In semiconductor quantum dots (QDs), charge carrier cooling is in direct competition with processes such as carrier multiplication or hot charge extraction that may improve the light conversion efficiency of photovoltaic devices. Understanding charge carrier cooling is therefo ...

Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequ ...

Charge transfer in semiconductor heterojunctions is largely governed by the offset in the energy levels of the constituent materials. Unfortunately, literature values for such energy level offsets vary widely and are usually based on energy levels of the individual materials r ...