SG

S. Gudjónsdóttir

13 records found

Electrochemical charging of nanocrystal films opens up new possibilities for designing quantum dot-based device structures, but a solid theoretical framework of this process and its limitations is lacking. In this work, drift-diffusion simulations are employed to model the chargi ...
Quantum dots (QDs) are considered for devices like light-emitting diodes (LEDs) and photodetectors as a result of their tunable optoelectronic properties. To utilize the full potential of QDs for optoelectronic applications, control over the charge carrier density is vital. Howev ...
Solution processed quantum dot (QD) lasers are one of the holy-grails of nanoscience. They are not yet commercialized because the lasing threshold is too high: one needs < 1 exciton per QD, which is hard to achieve due to fast non-radiative Auger recombination. The threshold c ...
Arguably the most controllable way to control the charge density in various semiconductors, is by electrochemical doping. However, electrochemically injected charges usually disappear within minutes to hours, which is why this technique is not yet used to make semiconductor devic ...

Doping on Demand

Permanent electrochemical doping of colloidal quantum dots and organic semiconductors

Control over the charge carrier density of semiconductor materials is essential for various electronic devices. Unfortunately, common electronic doping methods have not always been successful for new generations of semiconductors, such as organic semiconductors and colloidal quan ...
Solution-processed quantum dot (QD) lasers are one of the holy grails of nanoscience. They are not yet commercialized because the lasing threshold is too high: one needs >1 exciton per QD, which is difficult to achieve because of fast nonradiative Auger recombination. The thre ...
Colloidal quantum dots (QDs) allow great flexibility in the design of optoelectronic devices, thanks to their size-dependent optical and electronic properties and the possibility to fabricate thin films with solution-based processing. In particular, in QD-based heterojunctions, t ...
Electronic doping of semiconductor nanomaterials can be efficiently achieved using electrochemistry. However, the injected charge carriers are usually not very stable. After disconnecting the cell that is used for electrochemical doping the carrier density drops, typically in sev ...
Semiconductor films that allow facile ion transport can be electronically doped via electrochemistry, where the amount of injected charge can be controlled by the potential applied. To apply electrochemical doping to the design of semiconductor devices, the injected charge has to ...
In this work, we systematically study the spectroelectrochemical response of CdSe quantum dots (QDs), CdSe/CdS core/shell QDs with varying CdS shell thicknesses, and CdSe/CdS/ZnS core/shell/shell QDs in order to elucidate the influence of localized surface trap states on the opto ...
Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating ele ...
The processes that govern radiative recombination in ternary CuInS2 (CIS) nanocrystals (NCs) have been heavily debated, but recently, several research groups have come to the same conclusion that a photoexcited electron recombines with a localized hole on a Cu-related ...
Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying ...