FG
F.C. Grozema
206 records found
1
...
Spatiotemporal pH imaging using fluorescence lifetime imaging microscopy (FLIM) is an excellent technique for investigating dynamic (electro)chemical processes. However, probes that are responsive at high pH values are not available. Here, we describe the development and applicat
...
Understanding the interplay between the kinetics and energetics of photophysical processes in perovskite-chromophore hybrid systems is crucial for realizing their potential in optoelectronics, photocatalysis, and light-harvesting applications. By combining steady-state optical ch
...
Quasi-2D Hybrid Perovskite Formation Using Benzothieno[3,2-b]Benzothiophene (BTBT) Ammonium Cations
Substantial Cesium Lead(II) Iodide Black Phase Stabilization
3D hybrid perovskites (APbX3) have made a significant impact on the field of optoelectronic materials due to their excellent performance combined with facile solution deposition and up-scalable device fabrication. Nonetheless, these materials suffer from environmental
...
A series of three perylenemonoimide-p-oligophenylene-dimethylaniline molecular dyads undergo photoinduced charge separation (CS) with anomalous distance dependence as a function of increasing donor-acceptor (DA) distances. A comprehensive experimental and computational investigat
...
Limits of Defect Tolerance in Perovskite Nanocrystals
Effect of Local Electrostatic Potential on Trap States
One of the most promising properties of lead halide perovskite nanocrystals (NCs) is their defect tolerance. It is often argued that, due to the electronic structure of the conduction and valence bands, undercoordinated ions can only form localized levels inside or close to the b
...
Switching effects are key elements in the design and characterization of nanoscale molecular electronics systems. They are used to achieve functionality through the transition between different conducting states. In this study, we analyze the presence of switching events in refer
...
The control of local order in polymer semiconductors using non-covalent interactions may be used to engineer materials with interesting combinations of mechanical and optoelectronic properties. To investigate the possibility of preparing n-type polymer semiconductors in which hyd
...
Low-dimensional hybrid perovskites have emerged as promising materials for optoelectronic applications. Although these materials have already demonstrated enhanced stability as compared to their three-dimensional perovskite analogues, their functionality has been limited by the i
...
Excited state dynamics of BODIPY-based acceptor-donor-acceptor systems
A combined experimental and computational study
Donor-bridge-acceptor systems based on boron dipyrromethene (BODIPY) are attractive candidates for bio-imagining and sensing applications because of their sensitivity to temperature, micro-viscosity and solvent polarity. The optimization of the properties of such molecular sensor
...
Solution-processed quasi-2D perovskites are promising for stable and efficient solar cells because of their superior environmental stability compared to 3D perovskites and tunable optoelectronic properties. Changing the number of inorganic layers (n) sandwiched between the organi
...
Two light-harvesting antenna molecules were obtained by positioning naphthalene monoimide energy donors at the imide position, instead of the bay positions, of perylene imide energy acceptors. Such rational design resulted in a complete suppression of parasitic intramolecular cha
...
Polymer semiconductors show unique combinations of mechanical and optoelectronic properties that strongly depend on their microstructure and morphology. Here, we have used a model π-conjugated bithiophene repeat unit to incorporate optoelectronic functionality into an aliphatic p
...
Structural Dynamics of Two-Dimensional Ruddlesden-Popper Perovskites
A Computational Study
Recently two-dimensional (2D) hybrid organic-inorganic perovskites have attracted a lot of interest as more stable analogues of their three-dimensional counterparts for optoelectronic applications. However, a thorough understanding of the effect that this reduced dimensionality h
...
Formamidinium-Based Dion-Jacobson Layered Hybrid Perovskites
Structural Complexity and Optoelectronic Properties
Layered hybrid perovskites have emerged as a promising alternative to stabilizing hybrid organic–inorganic perovskite materials, which are predominantly based on Ruddlesden-Popper structures. Formamidinium (FA)-based Dion-Jacobson perovskite analogs are developed that feature bif
...
The role of Pt on photocatalytic substrates such as TiO2 (P25) for the decomposition of organic pollutants is still controversial in the scientific community. The well-observed behavior of an optimum catalytic activity as a function of the Pt loading is usually explain
...
Trapping and Detrapping in Colloidal Perovskite Nanoplatelets
Elucidation and Prevention of Nonradiative Processes through Chemical Treatment
Metal-halide perovskite nanocrystals show promise as the future active material in photovoltaics, lighting, and other optoelectronic applications. The appeal of these materials is largely due to the robustness of the optoelectronic properties to structural defects. The photolumin
...
Layered hybrid perovskites comprising adamantyl spacer (A) cations based on the A2FAn−1PbnI3n+1(n= 1-3, FA = formamidinium) compositions have recently been shown to act as promising materials for photovoltaic applications. While the cor
...
Two-dimensional (2D) hybrid perovskites make up an emerging class of materials for optoelectronic applications in which inorganic octahedral layers are separated by nonconductive large organic cations. This leads to a high-dimensional and dielectric confinement and hence a high e
...
Directing energy and charge transfer processes in light-harvesting antenna systems is quintessential for optimizing the efficiency of molecular devices for artificial photosynthesis. In this work, we report a novel synthetic method to construct two regioisomeric antenna molecules
...