Circular Image

M.C. Gelvez Rueda

24 records found

Low-dimensional hybrid perovskites have emerged as promising materials for optoelectronic applications. Although these materials have already demonstrated enhanced stability as compared to their three-dimensional perovskite analogues, their functionality has been limited by the i ...
Solution-processed quasi-2D perovskites are promising for stable and efficient solar cells because of their superior environmental stability compared to 3D perovskites and tunable optoelectronic properties. Changing the number of inorganic layers (n) sandwiched between the organi ...
In this work we demonstrate a novel approach to achieve efficient charge separation in dimensionally and dielectrically confined two-dimensional perovskite materials. Two-dimensional perovskites generally exhibit large exciton binding energies that limit their application in opto ...

Perovskite Solar Cells

Stable under Space Conditions

Metal halide perovskite solar cells (PSCs) are of interest for high altitude and space applications due to their lightweight and versatile form factor. However, their resilience toward the particle spectrum encountered in space is still of concern. For space cells, the effect of ...
In this thesis we have aimed to tune and control the optoelectronic properties of organic-inorganic metal halide perovskites by systematically changing components in the structure and studying the charge carrier dynamic mechanisms....@en

2D layered perovskite containing functionalised benzothieno-benzothiophene molecules

Formation, degradation, optical properties and photoconductivity

2D layered hybrid perovskites are currently in the spotlight for applications such as solar cells, light-emitting diodes, transistors and photodetectors. The structural freedom of 2D layered perovskites allows for the incorporation of organic cations that can potentially possess ...
Herein we demonstrate the dry synthesis of CsBi3I10 both as a free-standing material and in the form of homogeneous thin films, deposited by thermal vacuum deposition. Chemical and optical characterization shows high thermal stability, phase purity, and photoluminescence centered ...

Formamidinium-Based Dion-Jacobson Layered Hybrid Perovskites

Structural Complexity and Optoelectronic Properties

Layered hybrid perovskites have emerged as a promising alternative to stabilizing hybrid organic–inorganic perovskite materials, which are predominantly based on Ruddlesden-Popper structures. Formamidinium (FA)-based Dion-Jacobson perovskite analogs are developed that feature bif ...
Formamidinium (FA) lead iodide perovskite materials feature promising photovoltaic performances and superior thermal stabilities. However, conversion of the perovskite α-FAPbI3 phase to the thermodynamically stable yet photovoltaically inactive δ-FAPbI3 phas ...
Two-dimensional (2D) hybrid perovskites make up an emerging class of materials for optoelectronic applications in which inorganic octahedral layers are separated by nonconductive large organic cations. This leads to a high-dimensional and dielectric confinement and hence a high e ...
In this work, we show that the quality of the precursor and the thin film preparation strongly affect the optoelectronic properties of the 2D perovskite BA2PbI4. 2D perovskites with alkylammonium organic cations such as butylammonium (BA) are relatively soft ...
Layered hybrid perovskites comprising adamantyl spacer (A) cations based on the A2FAn−1PbnI3n+1(n= 1-3, FA = formamidinium) compositions have recently been shown to act as promising materials for photovoltaic applications. While the cor ...
Although methylammonium lead iodide (MAPI) perovskite solar cells have reached efficiencies above 20%, the material is environmentally unstable. Mixing MAPI with lower dimensional (LD) perovskites has been suggested to improve its stability in recent studies. However, the LD-mixe ...
Low-dimensional lead halide hybrid perovskites are nowadays in the spotlight because of their improved stability and extensive chemical flexibility compared to their 3D perovskite counterparts, the current challenge being to design functionalized organic cations. Here, we report ...
Methylammonium lead iodide (MAPI) is a prototypical photoabsorber in perovskite solar cells (PSCs), reaching efficiencies above 20%. However, its hygroscopic nature has prompted the quest for water-resistant alternatives. Recent studies have suggested that mixing MAPI with lower ...
Phase-pure CsSnI3, FASnI3, Cs(PbSn)I3, FA(PbSn)I3 perovskites (FA = formamidinium = HC(NH2)2 +) as well as the analogous so-called vacancy-ordered double perovskites Cs2SnI6 and FA< ...
We synthesize single crystals of a new 2,5-dimethylanilinium tin iodide organic-inorganic hybrid compound and 2,5-dimethylanilinium triiodide. Single-crystal X-ray diffraction reveals that the hybrid grows as a unique rhombohedral structure consisting of one-dimensional chains of ...
Double perovskites, comprising two different cations, are potential nontoxic alternatives to lead halide perovskites. Here, we characterized thin films and crystals of Cs2AgBiBr6 by time-resolved microwave conductance (TRMC), which probes formation and decay ...
Recently, halide double perovskites (HDPs), such as Cs2AgBiBr6, have been reported as promising nontoxic alternatives to lead halide perovskites. However, it remains unclear whether the charge-transport properties of these materials are as favorable as for l ...

Multi-layered hybrid perovskites templated with carbazole derivatives

Optical properties, enhanced moisture stability and solar cell characteristics

Research into 2D layered hybrid perovskites is on the rise due to the enhanced stability of these materials compared to 3D hybrid perovskites. Recently, interest towards the use of functional organic cations for these materials is increasing. However, a vast amount of the paramet ...