Hv

H.S.J. van der Zant

420 records found

The unique properties of two-dimensional (2D) materials bring great promise to improve sensor performance and realise novel sensing principles. However, to enable their high-volume production, wafer-scale processes that allow integration with electronic readout circuits need to b ...
Graphene has garnered significant interest in optoelectronics due to its unique properties, including broad wavelength absorption and high mobility. However, its weak stability in ambient conditions requires encapsulation for practical applications. In this study, we investigate ...
Organic radicals are promising candidates for molecular spintronics due to their intrinsic magnetic moment, their low spin-orbit coupling, and their weak hyperfine interactions. Using a mechanically controlled break junction setup at both room and low temperatures (6 K), we analy ...
The layered metamagnet CrSBr offers a rich interplay between magnetic, optical, and electrical properties that can be extended down to the two-dimensional (2D) limit. Despite the extensive research regarding the long-range magnetic order in magnetic van der Waals materials, short ...
Multicellular cable bacteria display an exceptional form of biological conduction, channeling electric currents across centimeter distances through a regular network of protein fibers embedded in the cell envelope. The fiber conductivity is among the highest recorded for biomater ...
The addition of a lateral alkyl chain is a well-known strategy to reduce π-stacked ensembles of molecules in solution, with the intention to minimize the interactions between the molecules’ backbones. In this paper, we study whether this concept generalizes to single-molecule jun ...
To investigate interference phenomena and conductance properties in mechanically controlled break junctions (MCBJs), macrocycles 1 and 2 (BMCs: for BenzeneMacroCycles), containing a meta-substituted benzene moiety with solubilizing tert-butyl groups, as well as structures 3 and 4 ...
The achievement of valley-polarized electron currents is a cornerstone for the realization of valleytronic devices. Here, we report on ballistic coherent transport experiments where two opposite quantum point contacts (QPCs) are defined by electrostatic gating in a bilayer graphe ...
The high susceptibility of ultrathin two-dimensional (2D) material resonators to force and temperature makes them ideal systems for sensing applications and exploring thermomechanical coupling. Although the dynamics of these systems at high stress has been thoroughly investigated ...
Helical molecules have been proposed as candidates for producing spin-polarized currents, even at room conditions, due to their chiral asymmetry. However, describing their transport mechanism in single molecular junctions is not straightforward. In this work, we show the synthesi ...
The recent discovery of cable bacteria has greatly expanded the known length scale of biological electron transport, as these multi-cellular bacteria are capable of mediating electrical currents across centimeter-scale distances. To enable such long-range conduction, cable bacter ...
Heterostructures, composed of semiconducting transition-metal dichalcogenides (TMDC) and magnetic van-der-Waals materials, offer exciting prospects for the manipulation of the TMDC valley properties via proximity interaction with the magnetic material. We show that the atomic pro ...
Heat transport in two dimensions is fundamentally different from that in three dimensions. As a consequence, the thermal properties of 2D materials are of great interest, from both scientific and application points of view. However, few techniques are available for the accurate d ...
Open-shell polycyclic aromatic hydrocarbons (PAHs) represent promising building blocks for carbon-based functional magnetic materials. Their magnetic properties stem from the presence of unpaired electrons localized in radical states of π character. Consequently, these materials ...
Heat-to-charge conversion efficiency of thermoelectric materials is closely linked to the entropy per charge carrier. Thus, magnetic materials are promising building blocks for highly efficient energy harvesters as their carrier entropy is boosted by a spin degree of freedom. In ...
Quantum interference plays an important role in charge transport through single-molecule junctions, even at room temperature. Of special interest is the measurement of the destructive quantum interference dip itself. Such measurements are especially demanding when performed in a ...
We present the electrical characterization of wafer-scale graphene devices fabricated with an industrially-relevant, contact-first integration scheme combined with Al2O3 encapsulation via atomic layer deposition. All the devices show a statistically signific ...
We report on the fabrication of a single-electron transistor based on ferritin using wide self-aligned nanogap devices. A local gate below the gap area enables three-terminal electrical measurements, showing the Coulomb blockade in good agreement with the single-electron tunnelin ...
Break-junction techniques provide the possibility to study electric and thermoelectric properties of single-molecule junctions in great detail. These techniques rely on the same principle of controllably breaking metallic contacts in order to create single-molecule junctions, whi ...
Exploiting the potential of curcuminoids (CCMoids) as molecular platforms, a new 3.53 nm extended system (pyACCMoid, 2) has been designed in two steps by reacting a CCMoid with amino-terminal groups (NH2-CCMoid, 1, of 1.79 nm length) with polycyclic aromatic hydrocarbon (PAH) ald ...