DV

Daniel Vanmaekelbergh

8 records found

Authored

We studied the initial nature and relaxation of photoexcited electronic states in CdSe nanoplatelets (NPLs). Ultrafast transient optical absorption (TA) measurements were combined with the theoretical analysis of the formation and decay of excitons, biexcitons, free charge car ...

Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of low-dimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance o ...

We show that the finite lateral sizes of ultrathin CdSe nanoplatelets strongly affect both their photoluminescence and optical absorption spectra. This is in contrast to the situation in quantum wells, in which the large lateral sizes may be assumed to be infinite. The lateral ...

It has been shown recently that atomically coherent superstructures of a nanocrystal monolayer in thickness can be prepared by self-assembly of monodisperse PbSe nanocrystals, followed by oriented attachment. Superstructures with a honeycomb nanogeometry are of special interes ...

Carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well ...

Cation exchange is a very powerful method for creating heterogeneous nanocrystals (NCs), such as core‐shell or rod‐tip nanostructures. Here we present an overview of the experimental and simulation efforts made to elucidate the atomic mechanism underlying cation exchange in PbSe/ ...

Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequ ...

Charge transfer in semiconductor heterojunctions is largely governed by the offset in the energy levels of the constituent materials. Unfortunately, literature values for such energy level offsets vary widely and are usually based on energy levels of the individual materials r ...