Circular Image

J. Sietsma

527 records found

This work investigates the formation of the recrystallisation microstructure and texture of various single-phase ferrite low-carbon steels that were rolled at different temperatures and of which the deformation microstructure was characterized by high resolution electron backscat ...
Increasing train speeds and the reduction of maintenance slots places high demands on the railway rails. To meet the challenging demands, producers regularly introduce new steel types. In this experimental investigation is the mechanical behavior of an air-cooled vanadium-alloyed ...
Carbon segregation to defects in martensite is a phenomenon known for its occurrence and interference with mechanisms such as carbon partitioning in multiphase steels. Especially in martensite–austenite partitioning processes, carbon trapping at/de-trapping from martensite defect ...
The production reality of sheet steels from casting to the end product is such that in the cases of ultra- and advanced high-strength steels, we have to deal with the segregation of elements on macro- and microlevels. Both can have a significant impact on the microstructure forma ...
In the present study, the nucleation of static recrystallization (SRX) in austenite after hot deformation is experimentally analyzed using a Ni-30 pct Fe model alloy. In agreement with the predictions by current models, nucleation rate exhibits a strong peak, early during SRX. Wh ...

Static Unified Inelastic Model

Pre- and post-yield dislocation-mediated deformation

Modelling dislocation glide over the initial part of a stress–strain curve of metals received little attention up to now. However, dislocation glide is essential to ones understanding of the fundamental relationship between inelastic deformation and the evolution of the dislocati ...
The austenitization of an initial pearlitic microstructure is simulated using the phase field model to achieve insight into White Etching Layer (WEL) formation in pearlitic railway steels. The simulations take into account the resolution of the cementite lamellae within a pearlit ...
The influence of carbon concentration variations on pearlite formation (20 h at 600 °C) in a case-carburized steel is investigated. The resultant microstructure shows three distinct regions: carburized case, a transition region, and the original core. The microstructural transiti ...
This work investigates the role of grain size and recrystallization texture in the corrosion behavior of pure iron in 0.1 M sulfuric acid solution. Annealing heat treatment was applied to obtain samples with different average grain sizes (26, 53 and 87 µm). Optical microscopy, X- ...
Multi-barrier cleavage models consider cleavage fracture which is characterized by a series of microscale events. One of the challenges for multi-barrier cleavage models is the strong variations of cleavage parameters across different types of steels. The source and magnitude of ...
High strength steels are widely used for structural applications, where a combination of excellent strength and ductile-to-brittle transition (DBT) properties are required. However, such a combination of high strength and toughness can be deteriorated in the heat affected zone (H ...
Study of the cleavage behavior of heat treated S690 steel by a microstructure-based approach combined with finite element analysis is present in this paper. Cleavage simulations of steels subjected to heat treatments that cause grain refinement or simulate heat affected zones are ...
In many commercial steel processing routes, steel microstructures are reverted to an austenitic condition prior to the final processing steps. Understanding the microstructure development during austenitization is crucial for improving the performance and reliability of the micro ...
Microscopic stress and strain partitioning control the mechanical and damage behavior of multiphase steels. Using a combined numerical and experimental approach, local strain distributions and deformation localization are characterized in a carbide free bainitic steel produced by ...
In the present work, an ODS 12 Cr steel was characterized using Electron Microscopy techniques, in an as-received condition and after annealing treatments between 773 K and 1573 K. Results show a complex microstructure, with the presence of fine Y–Ti–O nanoparticles dispersed in ...
The role of prior austenite grain size (PAGS) on the passive layer properties of martensitic steels is studied. Electron backscatter diffraction analysis shows that PAGS between 5 and 66 µm were obtained after applying different heat treatments. The barrier properties of passive ...
Physics-based crystal plasticity models rely on certain statistical assumptions about the collective behavior of dislocation populations on one slip system and their interactions with the dislocations on the other slip systems. One main advantage of using such physics-based const ...
The reversible behaviour of metals at low applied stresses is more complex than the generally assumed linear behaviour. This is primarily because of the reversible nature of dislocation motion leading to a strain contribution known as anelasticity. This work aims to investigate ( ...
High-resolution three-dimensional crystal plasticity simulations are used to investigate deformation heterogeneity and microstructure evolution during cold rolling of interstitial free (IF-) steel. A Fast Fourier Transform (FFT)-based spectral solver is used to conduct crystal pl ...
For structural assessment and optimal design of thick-section high-strength steels in applications under harsh service conditions, it is essential to understand the cleavage fracture micromechanisms. In this study, we assess the effects of through-thickness microstructure of an 8 ...