AR
A.C. Riemslag
76 records found
1
Superelastic metamaterials have attracted significant attention recently, but achieving such functionality remains challenging due to partial superelasticity and premature fracture in additively manufactured components. To address these issues, this study investigates the prematu
...
Additively manufactured Nitinol (NiTi) architectured materials, designed with unit cell architectures, hold promise for customisable applications. However, the common assumption of homogeneity in modeling and additive manufacturing of these architectured materials needs further i
...
Additive manufacturing of NiTi shape memory alloys has attracted attention in recent years, due to design flexibility and feasibility to achieve four-dimensional (4D) function response. To obtain customized 4D functional responses in NiTi structures, tailorable phase transformati
...
Superelastic metallic materials possessing large recoverable strains are widely used in automotive, aerospace and energy conversion industries. Superelastic materials working at high temperatures and with a wide temperature range are increasingly required for demanding applicatio
...
In this work, the hydrogen fatigue of pipeline steel X60, its girth welds and weld defects were investigated through in situ fatigue testing. A novel in situ gaseous hydrogen charging fatigue set-up was developed, which involves a sample geometry that mimics a small-scale pipelin
...
High strength steels are widely used for structural applications, where a combination of excellent strength and ductile-to-brittle transition (DBT) properties are required. However, such a combination of high strength and toughness can be deteriorated in the heat affected zone (H
...
In energy absorption applications, architectured metallic materials generally suffer from unrecoverable deformation as a result of local yield damage or inelastic buckling. Nitinol (NiTi) offers recoverable deformation and energy dissipation due to its unique superelasticity, whi
...
Hydrogen Embrittlement of Inconel 718 Manufactured by Laser Powder Bed Fusion Using Sustainable Feedstock
Effect of Heat Treatment and Microstructural Anisotropy
This study investigated the in-situ gaseous (under 150 bar) hydrogen embrittlement behaviour of additively manufactured (AM) Inconel 718 produced from sustainable feedstock. Here, sustainable feedstock refers to the Inconel 718 powder produced by vacuum induction melting inert ga
...
Sub-size specimen testing offers a potentially elegant solution to accompany fatigue life assessments in determining vital fatigue parameters such as effective fatigue crack growth propagation thresholds (ΔKth,eff). Additively manufactured parts stand to benefit from t
...
Additive manufacturing of functionally graded inconel 718
Effect of heat treatment and building orientation on microstructure and fatigue behaviour
This paper addresses the effect of the post-process heat treatments on the microstructure and fatigue crack growth behaviour of the functionally graded (FG) laser powder bed fusion (L-PBF) Inconel 718 (IN718) superalloy. Sets of samples were additively manufactured (AM) altering
...
The reversible behaviour of metals at low applied stresses is more complex than the generally assumed linear behaviour. This is primarily because of the reversible nature of dislocation motion leading to a strain contribution known as anelasticity. This work aims to investigate (
...
With fossil fuels being phased out and growing global interest in a hydrogen economy, there is demand for re-purposing existing pipelines for transportation of hydrogen gas. However, hydrogen embrittlement (HE) can limit pipeline steel’s performance. In this study, the effect of
...
In this paper, the effect of microstructural anisotropy on the fatigue crack growth behaviour of the functionally graded Inconel 718 fabricated through laser powder bed fusion (L-PBF) is investigated. Different manufacturing parameters, including low and high laser powers, were u
...
This work discusses the design and demonstration of an in-situ test setup for testing pipeline steels in a high pressure gaseous hydrogen (H2) environment. A miniature hollow pipe-like tensile specimen was designed that acts as the gas containment volume during the test. Specific
...
In previous work on the thermo-mechanical fatigue (TMF) of compacted graphite iron (CGI), lifetimes measured under total constraint were confirmed analytically by numerical integration of Paris’ crack-growth law. In current work, the results for CGI are further validated for sphe
...
The fracture toughness of high strength steels is commonly determined by standard methods using Compact tension (CT) or Single edge notched bend (SENB) specimens. In the past the Circumferentially Notched Tension (CNT) geometry has been reported as a potential candidate for deter
...
Inconel 718 is a nickel-based superalloy commonly used in aircraft engine and nuclear applications, where components experience severe mechanical stresses. Due to the typical high temperature applications, Thermo-Mechanical Fatigue (TMF) and creep tests are common benchmarks for
...
The possibility of using a mix of recycled polypropylene (PP) with new glass fibre reinforced polypropylene as a materials source for 3D printed engineering components is investigated. The strength and elongation to fracture are determined for various grades of material and in re
...
Orientation contrast microscopy (i.e., electron backscattered diffraction, EBSD) was employed to monitor the plastic strain in loaded tensile samples of aluminium alloy Al6061 in T4 condition. The kernel average misorientation (KAM) is known to be an appropriate parameter in orie
...