Dr. S (Sepideh) Ghodrat
32 records found
1
According to the literature, there is a significant correlation be-tween the total experienced discomfort while seated and the maximum values of discomfort around the area of the side bolsters. However, there is not much research on bolster design. In this study pressure distribu
...
Emerging 4D printing techniques have enabled the realization of smart materials whose shape or properties can change with time. Two important phenomena play important roles in the 4D printing of shape memory polymeric materials. First, the anisotropic deformation of the printed f
...
Conventional hinge actuators often face limitations including excessive weight, large size and unpleasant noise. Shape memory alloys (SMAs) offer a solution to address these issues due to their favorable characteristics, such as lightweight, high actuation force and small form fa
...
Mimosa
Modular Self-folding Hinges Kit for Creating Shape-changing Objects
We developed a shape-changing constructive kit, named Mimosa1. A key component of the toolkit is the modular hinges, each of which is equipped with two antagonistic shape memory alloy (SMA) wires. One wire deforms the hinge to approach its predetermined angle at high temperature,
...
Plant root growth can be altered by introducing obstacles in the path of growth. This principle is used in design to produce planar grid structures composed of interweaving roots. The Engineered Plant Root Materials (EPRMs) grown with this method have the potential to serve as en
...
Devices delivering sophisticated and natural haptic feedback often encompass numerous mechanical elements, leading to increased sizes and wearability challenges. Shape memory alloys (SMAs) are lightweight, compact, and have high power-to-weight ratios, and thus can easily be embe
...
As an emerging technology, smart textiles have attracted attention for rehabilitation purposes or to monitor heart rate, blood pressure, breathing rate, body posture, as well as limb movements. Traditional rigid sensors do not always provide the desired level of comfort, flexibil
...
As an emerging technology, smart textiles have attracted attention for rehabilitation purposes to monitor heart rate, blood pressure, breathing rate, body posture and limb movements. Compared with traditional sensors, knitted sensors constructed from conductive yarns are breathab
...
Wearable haptic assistive devices can provide tactile information to visually impaired people (VIP) to support independent living. However, electromechanical haptic feedback has a number of disadvantages, including hardware being relatively heavy, large, and producing excessive s
...
In recent years, knitted strain sensors have been developed that aim to achieve reliable sensing and high wearability, but they are associated with difficulties due to high hysteresis and low gauge factor (GF) values. This study investigated the electromechanical performance of t
...
Shape memory alloy (SMA) wires are excellent candidates for wearable actuators since they are thin, low weight and have a high actuation force. The main drawbacks are that the wire should be kept straight and needs to be relatively long to enable a large enough actuation stroke.
...
Magnetic soft materials (MSMs) and magnetic shape memory polymers (MSMPs) have been some of the most intensely investigated newly developed material types in the last decade, thanks to the great and versatile potential of their innovative characteristic behaviors such as remote a
...
Compacted Graphite Iron is a suitable material for the engine cylinder heads of heavy duty trucks. In the base of the cylinder head, the Valve Bridge is subjected to Thermo-Mechanical Fatigue as a result of daily start-up and shut-down operational cycles. With the aim to investig
...
The cylinder head of heavy-duty fuel engines, made of compacted graphite iron, is sensitive to cracking as a result of a phenomenon called Thermo-Mechanical Fatigue (TMF) induced by subsequent start-up and shut-down cycles of the engine. Under laboratory conditions, various test
...
In previous work on the thermo-mechanical fatigue (TMF) of compacted graphite iron (CGI), lifetimes measured under total constraint were confirmed analytically by numerical integration of Paris’ crack-growth law. In current work, the results for CGI are further validated for sphe
...
The present study deals with the effect of constituent phase (austenite and martensite) characteristics on the microstructure and mechanical properties of an advanced high strength steel obtained through the quenching and partitioning (Q&P) process. The thermomechanical proce
...
Compacted graphite iron is the material of choice for engine cylinder heads of heavy-duty trucks. Compacted graphite iron provides the best possible compromise between optimum mechanical properties, compared to flake graphite iron, and optimum thermal conductivity, compared to sp
...
Orientation contrast microscopy (i.e., electron backscattered diffraction, EBSD) was employed to monitor the plastic strain in loaded tensile samples of aluminium alloy Al6061 in T4 condition. The kernel average misorientation (KAM) is known to be an appropriate parameter in orie
...