VM
V. Morete Barbosa Bertolo
12 records found
1
This study concentrates on the fatigue crack propagation behaviour of a high-strength low-alloy (HSLA) steel and austenitic stainless (AS) steel bi-material part, as obtained by wire arc additive manufacturing (WAAM). Due to partial mixing in the weld pool, the first layer of AS
...
Multi-barrier cleavage models consider cleavage fracture which is characterized by a series of microscale events. One of the challenges for multi-barrier cleavage models is the strong variations of cleavage parameters across different types of steels. The source and magnitude of
...
Study of the cleavage behavior of heat treated S690 steel by a microstructure-based approach combined with finite element analysis is present in this paper. Cleavage simulations of steels subjected to heat treatments that cause grain refinement or simulate heat affected zones are
...
The use of materials in increasingly severe service conditions raises concerns about structural safety with respect to cleavage fracture. There are three main material-related challenges that structures face under harsh environments: 1) the trade-off between strength and toughnes
...
High strength steels are widely used for structural applications, where a combination of excellent strength and ductile-to-brittle transition (DBT) properties are required. However, such a combination of high strength and toughness can be deteriorated in the heat affected zone (H
...
The through-thickness heterogeneous microstructure of thick-section high strength steels is responsible for the significant scatter of properties along the thickness. In this study, in order to identify the critical microstructural features in the fracture behaviour and allow for
...
Thick section S690 QT steel is modelled with a modified multibarrier model that is based on the weakest-link mechanism. Segregation bands are modelled as discrete layers which have different grain size, yield properties, and local fracture parameters from outside of the bands. Th
...
For structural assessment and optimal design of thick-section high-strength steels in applications under harsh service conditions, it is essential to understand the cleavage fracture micromechanisms. In this study, we assess the effects of through-thickness microstructure of an 8
...
In this paper, the effect of microstructural anisotropy on the fatigue crack growth behaviour of the functionally graded Inconel 718 fabricated through laser powder bed fusion (L-PBF) is investigated. Different manufacturing parameters, including low and high laser powers, were u
...
Macroscale cleavage fracture toughness of high strength steels is strongly related to the fracture of hard microstructural inclusions. Therefore, an accurate determination of the local stress on these inclusions based on the matrix stress is necessary for the statistical modellin
...
One of the main challenges in applying thick-section high-strength steels (HSS) at arctic condition in offshore and maritime industry is to maintain a sufficient level of toughness to prevent brittle failure. An aspect that requires special attention is the through-thickness micr
...
Recent developments and challenges of cleavage fracture modelling in steels
Aspects on microstructural mechanics and local approach methods
Offshore activity in low-temperature areas requires the use of analysis methods that are capable of reliably predicting cleavage (brittle) fracture of ferritic steels in order to guarantee the structural integrity during service. Cleavage fracture is controlled by physical events
...