SG
S. Gazibegovic
15 records found
1
Retraction Note - Epitaxy of advanced nanowire quantum devices
Correction to: Nature https://doi.org/10.1038/nature23468 Published online 24 August 2017
The authors of the paper “Epitaxy of advanced nanowire quantum devices”1 wish to retract this work. When preparing the underlying data for public release2, it was discovered that some data had been inappropriately deleted or cropped when preparing the final
...
Retraction Note
Quantized Majorana conductance (Nature, (2018), 556, 7699, (74-79), 10.1038/nature26142)
In this Letter, we reported electrical measurements and numerical simulations of hybrid superconducting–semiconducting nanowires in a magnetic field. We reported plateaus in the conductance at 2e2/h, which we interpreted as evidence for the presence of Majorana zero-modes. Howeve
...
Typical measurements of nanowire devices rely on end-to-end measurements to reveal mesoscopic phenomena such as quantized conductance or Coulomb blockades. However, creating nanoscale tunnel junctions allows one to directly measure other properties such as the density of states o
...
High aspect-ratio InSb nanowires (NWs) of high chemical purity are sought for implementing advanced quantum devices. The growth of InSb NWs is challenging, generally requiring a stem of a foreign material for nucleation. Such a stem tends to limit the length of InSb NWs and its m
...
Low-dimensional high-quality InSb materials are promising candidates for next-generation quantum devices due to the high carrier mobility, low effective mass, and large g-factor of the heavy element compound InSb. Various
...
We study superconducting quantum interference in InSb flake Josephson junctions. An even-odd effect in the amplitude and periodicity of the superconducting quantum interference pattern is found. Interestingly, the occurrence of this pattern coincides with enhanced conduction at b
...
Majorana zero-modes - a type of localized quasiparticle - hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differentia
...
The number of electrons in small metallic or semiconducting islands is quantised. When tunnelling is enabled via opaque barriers this number can change by an integer. In superconductors the addition is in units of two electron charges (2e), reflecting that the Cooper pair condens
...
Semiconductor nanowires such as InAs and InSb are promising materials for studying Majorana zero modes and demonstrating non-Abelian particle exchange relevant for topological quantum computing. While evidence for Majorana bound states in nanowires has been shown, the majority of
...
We study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify
...
Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contac
...
The functionality of semiconductor devices is determined by the incorporation of dopants at concentrations down to the parts per million (ppm) level and below. Optimization of intentional and unintentional impurity doping relies on methods to detect and map the level of impuritie
...
In this work we report on recent advances in the fabrication and characterization of crossed InSb nanowires. The yield of crystalline nanowire crosses has been increased by growing the wires on 111 facets created in 100-oriented InP substrates by wet chemical etching. Ebeam litho
...