LK
L.P. Kouwenhoven
291 records found
1
...
The formation of a topological superconducting phase in a quantum-dot-based Kitaev chain requires nearest neighbor crossed Andreev reflection and elastic cotunneling. Here, we report on a hybrid InSb nanowire in a three-site Kitaev chain geometry - the smallest system with well-d
...
Andreev bound states are fermionic states localized in weak links between superconductors which can be occupied with spinful quasiparticles. Microwave experiments using superconducting circuits with InAs/Al nanowire Josephson junctions have recently enabled probing and coherent m
...
Correction to
Ballistic Majorana nanowire devices (Nature Nanotechnology, (2018), 13, 3, (192-197), 10.1038/s41565-017-0032-8)
Correction to: Nature Nanotechnologyhttps://doi.org/10.1038/s41565-017-0032-8, published online 15 January 2018. The Letter reports Majorana signatures in hybrid InSb semiconductor nanowire–NbTiN superconductor devices. The devices exhibit a conductance plateau near the conductan
...
Andreev spin qubits have recently emerged as an alternative qubit platform with realizations in semiconductor–superconductor hybrid nanowires. In these qubits, the spin degree of freedom of a quasiparticle trapped in a Josephson junction is intrinsically spin–orbit coupled to the
...
The proximity effect of superconductivity on confined states in semiconductors gives rise to various bound states such as Andreev bound states, Andreev molecules, and Majorana zero modes. While such bound states do not conserve charge, their fermion parity is a good quantum numbe
...
Kitaev chains in quantum dot-superconductor arrays are a promising platform for the realization of topological superconductivity. As recently demonstrated, even a two-site chain can host Majorana zero modes known as “poor man’s Majorana”. Harnessing the potential of these states
...
We study the current-phase relation (CPR) of an InSb-Al nanowire Josephson junction in parallel magnetic fields up to 700 mT. At high magnetic fields and in narrow voltage intervals of a gate under the junction, the CPR exhibits π shifts. The supercurrent declines within these ga
...
Semiconducting nanowire Josephson junctions represent an attractive platform to investigate the anomalous Josephson effect and detect topological superconductivity. However, an external magnetic field generally suppresses the supercurrent through hybrid nanowire junctions and sig
...
Semiconductor nanowires coupled to superconductors can host Andreev bound states with distinct spin and parity, including a spin-zero state with an even number of electrons and a spin-1/2 state with odd-parity. Considering the difference in spin of the even and odd states, spin-f
...
Spin qubits in semiconductors are a promising platform for producing highly scalable quantum computing devices. However, it is difficult to realize multiqubit interactions over extended distances. Superconducting spin qubits provide an alternative by encoding a qubit in the spin
...
Tunneling spectroscopy is widely used to examine the subgap spectra in semiconductor-superconductor nanostructures when searching for Majorana zero modes (MZMs). Typically, semiconductor sections controlled by local gates at the ends of hybrids serve as tunnel barriers. Besides d
...
Utilizing dispersive gate sensing (DGS), we investigate the spin-orbit field (BSO) orientation in a many-electron double quantum dot (DQD) defined in an InSb nanowire. While characterizing the interdot tunnel couplings, we find the measured dispersive signal depends on the electr
...
We use a hybrid superconductor-semiconductor transmon device to perform spectroscopy of a quantum dot Josephson junction tuned to be in a spin-1/2 ground state with an unpaired quasiparticle. Because of spin-orbit coupling, we resolve two flux-sensitive branches in the transmon s
...
Cooper pair splitters hold utility as a platform for investigating the entanglement of electrons in Cooper pairs, but probing splitters with voltage-biased Ohmic contacts prevents the retention of electrons from split pairs since they can escape to the drain reservoirs. We report
...
Quantum error correction will be an essential ingredient in realizing fault-tolerant quantum computing. However, most correction schemes rely on the assumption that errors are sufficiently uncorrelated in space and time. In superconducting qubits, this assumption is drastically v
...
The proximity effect in semiconductor-superconductor nanowires is expected to generate an induced gap in the semiconductor. The magnitude of this induced gap, together with the semiconductor properties like spin-orbit coupling and g-factor, depends on the coupling between the mat
...
A short superconducting segment can couple attached quantum dots via elastic cotunneling (ECT) and crossed Andreev reflection (CAR). Such coupled quantum dots can host Majorana bound states provided that the ratio between CAR and ECT can be controlled. Metallic superconductors ha
...
Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals f
...
In superconducting quantum circuits, aluminum is one of the most widely used materials. It is currently also the superconductor of choice for the development of topological qubits. However, aluminum-based devices suffer from poor magnetic field compatibility. Herein, this limitat
...
We demonstrate the use of radio-frequency (rf) resonators to measure the capacitance of nanoscale semiconducting devices in field-effect transistor configurations. The rf resonator is attached to the gate or the lead of the device. Consequently, tuning the carrier density in the
...