PK
Peter Krogstrup
11 records found
1
We present a report on hybrid InSb-Pb nanowires that combine high spin-orbit coupling with a high critical field and a large superconducting gap. Material characterization indicates the Pb layer of high crystal quality on the nanowire side facets. Hard induced superconducting gap
...
Quantum error correction will be an essential ingredient in realizing fault-tolerant quantum computing. However, most correction schemes rely on the assumption that errors are sufficiently uncorrelated in space and time. In superconducting qubits, this assumption is drastically v
...
We demonstrate the use of radio-frequency (rf) resonators to measure the capacitance of nanoscale semiconducting devices in field-effect transistor configurations. The rf resonator is attached to the gate or the lead of the device. Consequently, tuning the carrier density in the
...
Isolation from the environment determines the extent to which charge is confined on an island, which manifests as Coulomb oscillations, such as charge dispersion. We investigate the charge dispersion of a nanowire transmon hosting a quantum dot in the junction. We observe rapid s
...
Hybrid superconducting circuits, which integrate nonsuperconducting elements into a circuit quantum electrodynamics (cQED) architecture, expand the possible applications of cQED. Building hybrid circuits that work in large magnetic fields presents even further possibilities, such
...
We demonstrate strong suppression of charge dispersion in a semiconductor-based transmon qubit across Josephson resonances associated with a quantum dot in the junction. On resonance, dispersion is drastically reduced compared to conventional transmons with corresponding Josephso
...
Readout and control of electrostatically confined electrons in semiconductors are key primitives of quantum information processing with solid-state spin qubits1,2. In superconductor–semiconductor heterostructures, localized electronic modes known as Andreev levels resu
...
Serial double quantum dots created in semiconductor nanostructures provide a versatile platform for investigating two-electron spin quantum states, which can be tuned by electrostatic gating and an external magnetic field. In this Rapid Communication, we directly measure the supe
...
We report on the selective-area chemical beam epitaxial growth of InAs in-plane, one-dimensional (1D) channels using patterned SiO2-coated InP(001), InP(111)B, and InP(011) substrates to establish a scalable platform for topological superconductor networks. Top-view scanning elec
...
The Cooper-pair transistor (CPT), a small superconducting island enclosed between two Josephson weak links, is the atomic building block of various superconducting quantum circuits. Utilizing gate-tunable semiconductor channels as weak links, the energy scale associated with the
...
Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contac
...