Hybrid superconducting circuits, which integrate nonsuperconducting elements into a circuit quantum electrodynamics (cQED) architecture, expand the possible applications of cQED. Building hybrid circuits that work in large magnetic fields presents even further possibilities, such
...
Hybrid superconducting circuits, which integrate nonsuperconducting elements into a circuit quantum electrodynamics (cQED) architecture, expand the possible applications of cQED. Building hybrid circuits that work in large magnetic fields presents even further possibilities, such as the probing of spin-polarized Andreev bound states and the investigation of topological superconductivity. Here we present a magnetic-field compatible hybrid fluxonium with an electrostatically tuned semiconducting nanowire as its nonlinear element. We operate the fluxonium in magnetic fields up to 1 T and use it to observe the f0-Josephson effect. This combination of gate tunability and field compatibility opens avenues for the control of spin-polarized phenomena using superconducting circuits and enables the use of the fluxonium as a readout device for topological qubits.
@en