Md

M.W.A. de Moor

16 records found

Correction to

Ballistic Majorana nanowire devices (Nature Nanotechnology, (2018), 13, 3, (192-197), 10.1038/s41565-017-0032-8)

Correction to: Nature Nanotechnologyhttps://doi.org/10.1038/s41565-017-0032-8, published online 15 January 2018. The Letter reports Majorana signatures in hybrid InSb semiconductor nanowire–NbTiN superconductor devices. The devices exhibit a conductance plateau near the conductan ...

Retraction Note - Epitaxy of advanced nanowire quantum devices

Correction to: Nature https://doi.org/10.1038/nature23468 Published online 24 August 2017

The authors of the paper “Epitaxy of advanced nanowire quantum devices”1 wish to retract this work. When preparing the underlying data for public release2, it was discovered that some data had been inappropriately deleted or cropped when preparing the final ...

Author Correction

In-plane selective area InSb–Al nanowire quantum networks (Communications Physics, (2020), 3, 1, (59), 10.1038/s42005-020-0324-4)

The Data availability statement of this article has been modified to add the accession link to the raw data. The old Data availability statement read “Materials and data that support the findings of this research are available within the paper. All data are available from the cor ...

Retraction Note

Quantized Majorana conductance (Nature, (2018), 556, 7699, (74-79), 10.1038/nature26142)

In this Letter, we reported electrical measurements and numerical simulations of hybrid superconducting–semiconducting nanowires in a magnetic field. We reported plateaus in the conductance at 2e2/h, which we interpreted as evidence for the presence of Majorana zero-modes. Howeve ...
Strong spin–orbit semiconductor nanowires coupled to a superconductor are predicted to host Majorana zero modes. Exchange (braiding) operations of Majorana modes form the logical gates of a topological quantum computer and require a network of nanowires. Here, we utilize an in-pl ...
Inhomogeneous superconductors can host electronic excitations, known as Andreev bound states (ABSs), below the superconducting energy gap. With the advent of topological superconductivity, a new kind of zero-energy ABS with exotic qualities, known as a Majorana bound state (MBS), ...
Quantum technology is a promising area of research, with the quantum computer as the prime example. Quantum computers can perform calculations thought to be impossible by conventional means. The fundamental building block of a quantum computer is a qubit, which is a quantumsystem ...
Majorana zero-modes - a type of localized quasiparticle - hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differentia ...
We study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify ...
Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics1–3. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor4,5, several tunnelling experiments repo ...
Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contac ...
Majorana zero modes (MZMs), prime candidates for topological quantum bits, are detected as zero bias conductance peaks (ZBPs) in tunneling spectroscopy measurements. Implementation of a narrow and high tunnel barrier in the next generation of Majorana devices can help to achieve ...
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quan ...
We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low te ...
Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due to the increased chance of back ...