DC
Diana Car
13 records found
1
Spin-orbit interaction (SOI) plays a key role in creating Majorana zero modes in semiconductor nanowires proximity coupled to a superconductor. We track the evolution of the induced superconducting gap in InSb nanowires coupled to a NbTiN superconductor in a large range of magnet
...
Superconducting coplanar-waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high-frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequ
...
Majorana zero modes (MZMs), prime candidates for topological quantum bits, are detected as zero bias conductance peaks (ZBPs) in tunneling spectroscopy measurements. Implementation of a narrow and high tunnel barrier in the next generation of Majorana devices can help to achieve
...
Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, d
...
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quan
...
Topological superconductivity is an exotic state of matter characterized by spinless p-wave Cooper pairing of electrons and by Majorana zero modes at the edges. The first signature of topological superconductivity is a robust zero-bias peak in tunneling conductance. We perform tu
...
In this work we report on recent advances in the fabrication and characterization of crossed InSb nanowires. The yield of crystalline nanowire crosses has been increased by growing the wires on 111 facets created in 100-oriented InP substrates by wet chemical etching. Ebeam litho
...
Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due to the increased chance of back
...
By employing a micrometer precision mechanical transfer technique, we embed individual InSb nanowires into a superconducting coplanar waveguide resonator. We investigate the characteristics of a double quantum dot formed in an InSb nanowire interacting with a single mode microwav
...
Proposals for studying topological superconductivity and Majorana bound states in a nanowire proximity coupled to superconductors require that transport in the nanowire is ballistic. Previous works on hybrid nanowire-superconductor systems have shown evidence for Majorana bound s
...
The Josephson effect describes supercurrent flowing through a junction connecting two superconducting leads by a thin barrier. This current is driven by a superconducting phase difference φbetween the leads. In the presence of chiral and time-reversal symmetry of the Cooper pair
...
The charge transport properties of individual InSb nanowires based transistors are studied at 4.2 K in the quasiballistic regime. The energy level separations at zero magnetic field are extracted from a bias voltage spectroscopy. The magnetoconductance under a magnetic field appl
...