CL

11 records found

Authored

Kitaev chains in quantum dot-superconductor arrays are a promising platform for the realization of topological superconductivity. As recently demonstrated, even a two-site chain can host Majorana zero modes known as “poor man’s Majorana”. Harnessing the potential of these states ...
Artificial Kitaev chains can be used to engineer Majorana bound states (MBSs) in superconductor–semiconductor hybrids1,2,3,4. In this work, we realize a two-site Kitaev chain in a two-dimensional electron gas by coupling two quantum dots through a region proximitized by a superco ...

We propose to implement a Kitaev chain based on an array of alternating normal and superconductor hybrid quantum dots embedded in semiconductors. In particular, the orbitals in the dot and the Andreev bound states in the hybrid are now on an equal footing, and both emerge as l ...

In a recent breakthrough experiment [Nature (London) 614, 445 (2023)10.1038/s41586-022-05585-1], signatures of Majorana zero modes have been observed in tunnel spectroscopy for a minimal Kitaev chain constructed from coupled quantum dots. However, as Ising anyons, Majoranas' m ...

Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposal ...

A short superconducting segment can couple attached quantum dots via elastic cotunneling (ECT) and crossed Andreev reflection (CAR). Such coupled quantum dots can host Majorana bound states provided that the ratio between CAR and ECT can be controlled. Metallic superconductors ...

Semiconductor quantum dots have proven to be a useful platform for quantum simulation in the solid state. However, implementing a superconducting coupling between quantum dots mediated by a Cooper pair has so far suffered from limited tunability and strong suppression. This ha ...

We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et al. Nature Physics 16, (2020)]. In addition to the previously studied Mach-Zehnder interference between t ...

Tunneling conductance spectroscopy in normal metal-superconductor junctions is an important tool for probing Andreev bound states in mesoscopic superconducting devices, such as Majorana nanowires. In an ideal superconducting device, the subgap conductance obeys specific symmet ...

We study the equilibrium dc Josephson current in a junction between an s-wave and a topological superconductor. Cooper pairs from the s-wave superconducting lead can transfer to the topological side either via an unpaired Majorana zero mode localized near the junction or via t ...

Contributed

The edge states in finite quantum Hall graphene have previously been shown to be valley polarised for zigzag and armchair edges. Assuming that the valley isospin is also conserved at a smooth normal-superconducting (NS) interface, theoretical research has previously predicted tha ...