D. Xu
15 records found
1
A short superconducting segment can couple attached quantum dots via elastic cotunneling (ECT) and crossed Andreev reflection (CAR). Such coupled quantum dots can host Majorana bound states provided that the ratio between CAR and ECT can be controlled. Metallic superconductors have so far been shown to mediate such tunneling phenomena, albeit with limited tunability. Here, we show that Andreev bound states formed in semiconductor-superconductor heterostructures can mediate CAR and ECT over mesoscopic length scales. Andreev bound states possess both an electron and a hole component, giving rise to an intricate interference phenomenon that allows us to tune the ratio between CAR and ECT deterministically. We further show that the combination of intrinsic spin-orbit coupling in InSb nanowires and an applied magnetic field provides another efficient knob to tune the ratio between ECT and CAR and optimize the amount of coupling between neighboring quantum dots.
@enSemiconductor nanowires coupled to superconductors can host Andreev bound states with distinct spin and parity, including a spin-zero state with an even number of electrons and a spin-1/2 state with odd-parity. Considering the difference in spin of the even and odd states, spin-filtered measurements can reveal the underlying ground state. To directly measure the spin of single-electron excitations, we probe an Andreev bound state using a spin-polarized quantum dot that acts as a bipolar spin filter, in combination with a non-polarized tunnel junction in a three-terminal circuit. We observe a spin-polarized excitation spectrum of the Andreev bound state, which can be fully spin-polarized, despite strong spin-orbit interaction in the InSb nanowires. Decoupling the hybrid from the normal lead causes a current blockade, by trapping the Andreev bound state in an excited state. Spin-polarized spectroscopy of hybrid nanowire devices, as demonstrated here, is proposed as an experimental tool to support the observation of topological superconductivity.
@enRetraction Note - Epitaxy of advanced nanowire quantum devices
Correction to: Nature https://doi.org/10.1038/nature23468 Published online 24 August 2017
The authors of the paper “Epitaxy of advanced nanowire quantum devices”1 wish to retract this work. When preparing the underlying data for public release2, it was discovered that some data had been inappropriately deleted or cropped when preparing the final published figures, and we promptly alerted the editors of Nature. We found unjustified data removal and cropping in Figures 4a and c, and Extended Data Figures 7 and 8, which affect the agreement between the theoretical curves and the experimental data and the claims of ballistic transport. We are accordingly retracting the paper. The authors stand by all the other data, and their contribution to advanced nanowire quantum devices. All authors have agreed to this retraction.
@enAuthor Correction
In-plane selective area InSb–Al nanowire quantum networks (Communications Physics, (2020), 3, 1, (59), 10.1038/s42005-020-0324-4)
The Data availability statement of this article has been modified to add the accession link to the raw data. The old Data availability statement read “Materials and data that support the findings of this research are available within the paper. All data are available from the corresponding author upon request”. This has been replaced by “Materials and data that support the findings of this research are available within the paper. The raw data have been deposited at https://zenodo.org/record/4589484#.YEoEOy1Y7Sd”. This has been corrected in both the HTML and PDF version of the article.
@enRetraction Note
Quantized Majorana conductance (Nature, (2018), 556, 7699, (74-79), 10.1038/nature26142)
In this Letter, we reported electrical measurements and numerical simulations of hybrid superconducting–semiconducting nanowires in a magnetic field. We reported plateaus in the conductance at 2e2/h, which we interpreted as evidence for the presence of Majorana zero-modes. However, several inconsistencies were pointed out by Sergey Frolov and Vincent Mourik between the raw measurement data that was made available to them and the figures that were published in the paper. We therefore re-analysed all the existing raw data for our original measurements and rebuilt the original experimental set-up for a re-calibration of the conductance values. We established that the data in two of the figures (Fig. 2a and Extended Data Fig. 4b) had been unnecessarily corrected for charge jumps (corrections that were not mentioned explicitly in the paper), and that one of the figure axes was mislabelled (Fig. 4b). The new conductance calibration shifted the plateau values by 8 per cent, above 2e2/h, which affects all the figures1. When the data are replotted over the full parameter range, including ranges that were not made available earlier, points are outside the 2-sigma error bars. We can therefore no longer claim the observation of a quantized Majorana conductance, and wish to retract this Letter. After informing Nature of this decision, Nature issued an Editorial Expression of Concern2 and initiated the retraction process. In ref. 1 we provide all the raw data underlying the published figures as well as the unpublished datasets. Ref. 1 also contains the analysis methods and a side-by-side comparison between the original and the corrected figures. In ref. 3 we provide a new manuscript with corrected and extended datasets, discussed in the context of new insights on zero-energy states in systems with inhomogeneous potentials and disorder. We thank Piet Brouwer, Klaus Ensslin, David Goldhaber-Gordon and Patrick Lee for the expert evaluation report available via ref. 1. We also thank Michael Wimmer and Bernard van Heck for their help with the analyses. We apologize to the community for insufficient scientific rigour in our original manuscript.
@enErratum
Editorial Expression of Concern: Quantized Majorana conductance (Nature)
Strong spin–orbit semiconductor nanowires coupled to a superconductor are predicted to host Majorana zero modes. Exchange (braiding) operations of Majorana modes form the logical gates of a topological quantum computer and require a network of nanowires. Here, we utilize an in-plane selective area growth technique for InSb–Al semiconductor–superconductor nanowire networks. Transport channels, free from extended defects, in InSb nanowire networks are realized on insulating, but heavily mismatched InP (111)B substrates by full relaxation of the lattice mismatch at the nanowire/substrate interface and nucleation of a complete network from a single nucleation site by optimizing the surface diffusion length of the adatoms. Essential quantum transport phenomena for topological quantum computing are demonstrated in these structures including phase-coherence lengths exceeding several micrometers with Aharonov–Bohm oscillations up to five harmonics and a hard superconducting gap accompanied by 2e-periodic Coulomb oscillations with an Al-based Cooper pair island integrated in the nanowire network.
@enWe developed an impedance bridge that operates at cryogenic temperatures (down to 60 mK) and in perpendicular magnetic fields up to at least 12 T. This is achieved by mounting a GaAs HEMT amplifier perpendicular to a printed circuit board containing the device under test and thereby parallel to the magnetic field. The measured amplitude and phase of the output signal allows for the separation of the total impedance into an absolute capacitance and a resistance. Through a detailed noise characterization, we find that the best resolution is obtained when operating the HEMT amplifier at the highest gain. We obtained a resolution in the absolute capacitance of 6.4 aF/Hz at 77 K on a comb-drive actuator while maintaining a small excitation amplitude of 15 kBT/e. We show the magnetic field functionality of our impedance bridge by measuring the quantum Hall plateaus of a top-gated hBN/graphene/hBN heterostructure at 60 mK with a probe signal of 12.8 kBT/e.
@enMajorana zero-modes - a type of localized quasiparticle - hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e 2 /h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e 2 /h, with a recent observation of a peak height close to 2e 2 /h. Here we report a quantized conductance plateau at 2e 2 /h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
@enWe study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify the coupling strength, which has consequences for the proximity induced superconducting gap, effective g-factor, and spin-orbit coupling, which all play a key role in understanding Majorana physics. We further show that level repulsion due to spin-orbit coupling in a finite size system can lead to seemingly stable zero bias conductance peaks, which mimic the behavior of Majorana zero modes. Our results improve the understanding of realistic Majorana nanowire systems.
@enThe number of electrons in small metallic or semiconducting islands is quantised. When tunnelling is enabled via opaque barriers this number can change by an integer. In superconductors the addition is in units of two electron charges (2e), reflecting that the Cooper pair condensate must have an even parity. This ground state (GS) is foundational for all superconducting qubit devices. Here, we study a hybrid superconducting-semiconducting island and find three typical GS evolutions in a parallel magnetic field: a robust 2e-periodic even-parity GS, a transition to a 2e-periodic odd-parity GS, and a transition from a 2e- to a 1e-periodic GS. The 2e-periodic odd-parity GS persistent in gate-voltage occurs when a spin-resolved subgap state crosses zero energy. For our 1e-periodic GSs we explicitly show the origin being a single zero-energy state gapped from the continuum, i.e., compatible with an Andreev bound states stabilized at zero energy or the presence of Majorana zero modes.
@enSemiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons - which are key elements of topological quantum computing - fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire 'hashtags' reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.
@en