J.P. Cnossen
18 records found
1
ZIMFLUX
Single molecule localization microscopy with patterned illumination in 3D
Three dimensional modulation-enhanced single-molecule localization techniques, such as ModLoc, offer advancements in axial localization precision across the entire field of view and axial capture range, by applying phase shifting to the illumination pattern. However, this improve
...
To better understand the interactions between biological molecules, a high optical resolution in all three dimensions is crucial. The intrinsically lower axial resolution of microscopes however, is a limiting factor in fluorescence imaging, correspondingly in fluorescence based s
...
Single-molecule localization microscopy requires sparse activation of emitters to circumvent the diffraction limit. In densely labeled or thick samples, overlap of emitter images is inevitable. Single-molecule localization of these samples results in a biased parameter estimate w
...
Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor σ to form a holoenzyme, which binds, bends and opens the promoter in a succession of re
...
Modulation enhanced single-molecule localization microscopy (meSMLM) methods improve the localization precision by using patterned illumination to encode additional position information. Iterative meSMLM (imeSMLM) methods iteratively generate prior information on emitter position
...
SOLEIL
Single-objective lens inclined light sheet localization microscopy
High-NA light sheet illumination can improve the resolution of single-molecule localization microscopy (SMLM) by reducing the background fluorescence. These approaches currently require custom-made sample holders or additional specialized objectives, which makes the sample mounti
...
Accurate image alignment is critical in multicolor single-molecule fluorescence microscopy. Global alignment using affine transformations leaves residual errors due to the nonlinearity of the distortions, which decreases the effective field of view. Subsequent local refinement de
...
Optical sectioning technologies achieve high precision localization by reducing the background photon count. We use tilted light-sheet microscopy to achieve optical sectioning in localization microscopy, enabling thick sample observation and low background photon count images. A
...
Single-photon avalanche diode (SPAD) arrays can be used for single-molecule localization microscopy (SMLM) because of their high frame rate and lack of readout noise. SPAD arrays have a binary frame output, which means photon arrivals should be described as a binomial process rat
...
Localization microscopy offers resolutions down to a single nanometer but currently requires additional dedicated hardware or fiducial markers to reduce resolution loss from the drift of the sample. Drift estimation without fiducial markers is typically implemented using redundan
...
Optical sectioning technologies achieve high precision localization by reducing the background photon count. We use tilted light-sheet microscopy to achieve optical sectioning in localization microscopy, enabling thick sample observation and low background photon count images. A
...
MINFLUX offers a breakthrough in single molecule localization precision, but is limited in field of view. Here we combine centroid estimation and illumination pattern induced photon count variations in a conventional widefield imaging setup to extract position information over a
...