RT

Rasmus Ø. Thorsen

8 records found

Combining orientation estimation with localization microscopy opens up the possibility to analyze the underlying orientation of biomolecules on the nanometer scale. Inspired by the recent improvement of the localization precision by shifting excitation patterns (MINFLUX, SIMFLUX) ...
Estimating the orientation and 3D position of rotationally constrained emitters with localization microscopy typically requires polarization splitting or a large engineered Point Spread Function (PSF). Here we utilize a compact modified PSF for single molecule emitter imaging to ...
MINFLUX offers a breakthrough in single molecule localization precision, but is limited in field of view. Here we combine centroid estimation and illumination pattern induced photon count variations in a conventional widefield imaging setup to extract position information over a ...
Point spread function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectori ...
Recently, Franke, Sauer and van de Linde introduced a way to estimate the axial position of single-molecules (TRABI). To this end, they compared the detected photon count from a temporal radial-aperture-based intensity estimation to the estimated count from Gaussian point-spread ...
Single Molecule Localization Microscopy (SMLM) emission spots are fitted with a Point Spread Function (PSF) model in order to find the position of the molecules. Recently Franke et al. [Nature Methods 2017] found that the use of a Gaussian PSF model can underestimate the photon c ...