CD
C. Dekker
435 records found
1
...
Synchronization plays a crucial role in the dynamics of living organisms. Uncovering the mechanism behind it requires an understanding of individual biological oscillators and the coupling forces between them. Here, a single-cell assay is developed that studies rhythmic behavior
...
Addendum to: Nature Communications https://doi.org/10.1038/s41467-023-35997-0, published online 27 Jan 2023@en
Graphene-drum-enabled nanomotion detection can play an important role in probing life at the nanoscale. By combining micro- and nanomechanical systems with optics, nanomotion sensors bridge the gap between mechanics and cellular biophysics. They have allowed investigation of proc
...
Correction to
Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells (Nature Communications, (2024), 15, 1, (2737), 10.1038/s41467-024-47094-x)
Correction to: Nature Communicationhttps://doi.org/10.1038/s41467-024-47094-x, published online 28 March 2024 The original version of this article contained an error in the “Acknowledgement “section. The original version read “We also acknowledge funding for the work in S.G. lab
...
Connecting the dots
Key insights on ParB for chromosome segregation from single-molecule studies
Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (Par
...
The ParABS system plays a critical role in bacterial chromosome segregation. The key component of this system, ParB, loads and spreads along DNA to form a local protein–DNA condensate known as a partition complex. As bacterial chromosomes are heavily supercoiled due to the contin
...
Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and
...
Biological nanopores crucially control the import and export of biomolecules across lipid membranes in cells. They have found widespread use in biophysics and biotechnology, where their typically narrow, fixed diameters enable selective transport of ions and small molecules, as w
...
Transcription-coupled supercoiling of DNA is a key factor in chromosome compaction and the regulation of genetic processes in all domains of life. It has become common knowledge that, during transcription, the DNA-dependent RNA polymerase (RNAP) induces positive supercoiling ahea
...
Eukaryotes carry three types of structural maintenance of chromosome (SMC) protein complexes, condensin, cohesin, and SMC5/6, which are ATP-dependent motor proteins that remodel the genome via DNA loop extrusion (LE). SMCs modulate DNA supercoiling but remains incompletely unders
...
Nanopore technology is widely used for sequencing DNA, RNA, and peptides with single-molecule resolution, for fingerprinting single proteins, and for detecting metabolites. However, the molecular driving forces controlling the analyte capture, its residence time, and its escape h
...
Cytoskeletal protein filaments such as actin and microtubules confer mechanical support to cells and facilitate many cellular functions such as motility and division. Recent years have witnessed the development of a variety of molecular scaffolds that mimic such filaments. Indeed
...
Peptide hormones are decorated with post-translational modifications (PTMs) that are crucial for receptor recognition. Tyrosine sulfation on plant peptide hormones is, for example, essential for plant growth and development. Measuring the occurrence and position of sulfotyrosine
...
Author Correction
Testing pseudotopological and nontopological models for SMC-driven DNA loop extrusion against roadblock-traversal experiments (Scientific Reports, (2023), 13, 1, (8100), 10.1038/s41598-023-35359-2)
Correction to: Scientific Reports, published online 19 May 2023 The original version of this Article contained an error in Figure 1b-1, where the fore- and background order of the strands “DNA” (in black) and “Brn1 Kleisin” (in green), were switched. The original Figure 1 and acc
...
Membrane abscission, the final cut of the last connection between emerging daughter cells, is an indispensable event in the last stage of cell division and in other cellular processes such as endocytosis, virus release or bacterial sporulation. However, its mechanism remains poor
...
Current methods to detect post-translational modifications of proteins, such as phosphate groups, cannot measure single molecules or differentiate between closely spaced phosphorylation sites. We detect post-translational modifications at the single-molecule level on immunopeptid
...
Bacteria that are resistant to antibiotics present an increasing burden on healthcare. To address this emerging crisis, novel rapid antibiotic susceptibility testing (AST) methods are eagerly needed. Here, we present an optical AST technique that can determine the bacterial viabi
...
The bacterial chromosome is spatially organized through protein-mediated compaction, supercoiling, and cell-boundary confinement. Structural Maintenance of Chromosomes (SMC) complexes are a major class of chromosome-organizing proteins present throughout all domains of life. Here
...
The Min proteins constitute the best-studied model system for pattern formation in cell biology. We theoretically predict and experimentally show that the propagation direction of in vitro Min protein patterns can be controlled by a hydrodynamic flow of the bulk solution. We find
...
Kinetoplast DNA (kDNA) is a two-dimensional Olympic-ring-like network of mutually linked DNA minicircles found in certain parasites called trypanosomes. Understanding the self-assembly and replication of this structure are not only major open questions in biology but can also inf
...