HN
H.J. Noorman
61 records found
1
Flow-following sensor technology offers a method to collect information on flow patterns and local velocities in pilot- and industrial scale reactors, which are practically inaccessible to many measurement techniques. Such data is highly valuable for scale-up of bioprocesses, as
...
As the youngest of the quartet of systems biology tools alongside genomics, transcriptomics, and proteomics, metabolomics provides an immediate and dynamic recording of cells in response to genetic and/or environmental perturbations. Metabolomics study accelerates learning steps
...
Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethan
...
In large-scale syngas fermentation, strong gradients in dissolved gas (CO, H2) concentrations are very likely to occur due to locally varying mass transfer and convection rates. Using Euler-Lagrangian CFD simulations, we analyzed these gradients in an industrial-scale
...
Abstract: Syngas fermentation is a leading microbial process for the conversion of carbon monoxide, carbon dioxide, and hydrogen to valuable biochemicals. Clostridium autoethanogenum stands as a model organism for this process, showcasing its ability to convert syngas into ethano
...
Commercial-scale bioreactors create an unnatural environment for microbes from an evolutionary point of view. Mixing insufficiencies expose individual cells to fluctuating nutrient concentrations on a second-to-minute scale while transcriptional and translational capacities limit
...
This study focuses on the metabolic impacts of simultaneous glucose and oxygen concentration gradients on penicillin production in an industrial-scale fermentor, using the computational fluid dynamics-cellular reaction dynamics approach. Inclusion of oxygen-coupling considerably
...
Mass transfer limitations in syngas fermentation processes are mostly attributed to poor solubility of CO and H2 in water. Despite these assumed limitations, a syngas fermentation process has recently been commercialized. Using large-sale external-loop gas-lift reactor
...
The compartment model (CM) is a well-known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbia
...
This study describes a methodological framework designed for the systematic processing of experimental syngas fermentation data for its use by metabolic models at pseudo-steady state and at transient state. The developed approach allows the use of not only own experimental data b
...
Towards closed carbon loop fermentations
Cofeeding of Yarrowia lipolytica with glucose and formic acid
A novel fermentation process was developed in which renewable electricity is indirectly used as an energy source in fermentation, synergistically decreasing both the consumption of sugar as a first generation carbon source and emission of the greenhouse gas CO2. As an
...
Performing in spite of starvation
How Saccharomyces cerevisiae maintains robust growth when facing famine zones in industrial bioreactors
In fed-batch operated industrial bioreactors, glucose-limited feeding is commonly applied for optimal control of cell growth and product formation. Still, microbial cells such as yeasts and bacteria are frequently exposed to glucose starvation conditions in poorly mixed zones or
...
Decarbonizing ethanol production via gas fermentation
Impact of the CO/H2/CO2 mix source on greenhouse gas emissions and production costs
This study explores key success factors for ethanol production via fermentation of gas streams, by assessing the effects of eight process variables driving the fermentation performance on the production costs and greenhouse gas emissions. Three fermentation feedstocks are assesse
...
Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling th
...
In industrial large-scale bioreactors, microorganisms encounter heterogeneous substrate concentration conditions, which can impact growth or product formation. Here we carried out an extended (12 h) experiment of repeated glucose pulsing with a 10-min period to simulate fluctuati
...
Syngas fermentation to biofuels and chemicals is an emerging technology in the biobased economy. Mass transfer is usually limiting the syngas fermentation rate, due to the low aqueous solubilities of the gaseous substrates. Membrane bioreactors, as efficient gas–liquid contactors
...
This work presents a strategy for optimizing the production process of ethanol via integrated gasification and syngas fermentation, a conversion platform of growing interest for its contribution to carbon recycling. The objective functions (minimum ethanol selling price (MESP), e
...
This study assesses the sensitivity of the technical, environmental and economic performance of three ethanol production process based on the fermentation of three gas mixtures: i) CO-rich flue gas from steel manufacturing, ii) biomass-based syngas with a H2/CO ratio o
...
Production of ethanol fuel via syngas fermentation
Optimization of economic performance and energy efficiency
In this work, a model was developed to predict the performance of a bubble column reactor for syngas fermentation and the subsequent recovery of anhydrous ethanol. The model was embedded in an optimization framework which employs surrogate models (artificial neural networks) and
...
Predicting by-product gradients of baker’s yeast production at industrial scale
A practical simulation approach
Scaling up bioprocesses is one of the most crucial steps in the commercialization of bioproducts. While it is known that concentration and shear rate gradients occur at larger scales, it is often too risky, if feasible at all, to conduct validation experiments at such scales. Usi
...