Circular Image

C. Haringa

39 records found

Flow-following sensor technology offers a method to collect information on flow patterns and local velocities in pilot- and industrial scale reactors, which are practically inaccessible to many measurement techniques. Such data is highly valuable for scale-up of bioprocesses, as ...
Efficient operation of bioreactors is crucial for the success of biomanufacturing processes. Traditional Computational Fluid Dynamics (CFD) simulations provide detailed insights but often involve lengthy computation times and complexity, hindering their practicality for real-time ...

Dynamic compartment models

Towards a rapid modeling approach for fed-batch fermentations

Anticipating the occurrence and effects of mass transport limitations during fermentation scale-up is essential for commercialization, as heterogeneities might affect microorganisms. Tools like Computational Fluid Dynamics (CFD) aid this analysis but are computationally intensive ...
Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethan ...

Bubbles and Broth

A review on the impact of broth composition on bubble column bioreactor hydrodynamics

The growing global population and heightened concern for climate change leads to increased interest in utilizing microbial fermentations to replace polluting production processes for e.g., plastics, fuels, and animal proteins. Computational fluid dynamics (CFD) is a valuable tool ...
As the youngest of the quartet of systems biology tools alongside genomics, transcriptomics, and proteomics, metabolomics provides an immediate and dynamic recording of cells in response to genetic and/or environmental perturbations. Metabolomics study accelerates learning steps ...
While traveling through different zones in large-scale bioreactors, microbes are most likely subjected to fluctuating dissolved oxygen (DO) conditions at the timescales of global circulation time. In this study, to mimic industrial-scale spatial DO gradients, we present a scale-d ...
In large-scale syngas fermentation, strong gradients in dissolved gas (CO, H2) concentrations are very likely to occur due to locally varying mass transfer and convection rates. Using Euler-Lagrangian CFD simulations, we analyzed these gradients in an industrial-scale ...

Microbial lifelines in bioprocesses

From concept to application

Bioprocesses are scaled up for the production of large product quantities. With larger fermenter volumes, mixing becomes increasingly inefficient and environmental gradients get more prominent than in smaller scales. Environmental gradients have an impact on the microorganism's m ...
This study focuses on the metabolic impacts of simultaneous glucose and oxygen concentration gradients on penicillin production in an industrial-scale fermentor, using the computational fluid dynamics-cellular reaction dynamics approach. Inclusion of oxygen-coupling considerably ...
Euler-Lagrange CFD simulations, where the biotic phase is represented by computational particles (parcels), provide information on environmental gradients inside bioreactors from the microbial perspective. Such information is highly relevant for reactor scale-down and process opt ...
Mass transfer limitations in syngas fermentation processes are mostly attributed to poor solubility of CO and H2 in water. Despite these assumed limitations, a syngas fermentation process has recently been commercialized. Using large-sale external-loop gas-lift reactor ...
The compartment model (CM) is a well-known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbia ...
In gas fermentations (using O2, CO, H2, CH4 or CO2), gas-to-liquid mass transfer is often regarded as one of the limiting processes. However, it is widely known that components in fermentation broths (e.g., salts, biomass, proteins, antifoam, and organic products such as alcohols ...
Scaling up bioprocesses is one of the most crucial steps in the commercialization of bioproducts. While it is known that concentration and shear rate gradients occur at larger scales, it is often too risky, if feasible at all, to conduct validation experiments at such scales. Usi ...
Bioprocess scale-up is a critical step in process development. However, loss of production performance upon scaling-up, including reduced titer, yield, or productivity, has often been observed, hindering the commercialization of biotech innovations. Recent developments in scale-d ...
Metabolomics aims to address what and how regulatory mechanisms are coordinated to achieve flux optimality, different metabolic objectives as well as appropriate adaptations to dynamic nutrient availability. Recent decades have witnessed that the integration of metabolomics and f ...
We show experimentally, and explain theoretically, what velocity is needed to break an elongated droplet entering a microfluidic T-junction. Our experiments on short droplets confirm previous experimental and theoretical work that shows that the critical velocity for breakup scal ...
In a 54 m3 large-scale penicillin fermentor, the cells experience substrate gradient cycles at the timescales of global mixing time about 20–40 s. Here, we used an intermittent feeding regime (IFR) and a two-compartment reactor (TCR) to mimic these substrate gradients ...

Power input effects on degeneration in prolonged penicillin chemostat cultures

A systems analysis at flux, residual glucose, metabolite, and transcript levels

In the present work, by performing chemostat experiments at 400 and 600 RPM, two typical power inputs representative of industrial penicillin fermentation (P/V, 1.00 kW/m3 in more remote zones and 3.83 kW/m3 in the vicinity of the impellers, respectively) we ...