Wv

248 records found

Microbioreactors for nutrient-controlled microbial cultures

Bridging the gap between bioprocess development and industrial use

It is common practice in the development of bioprocesses to genetically modify a microorganism and study a large number of resulting mutants in order to select the ones that perform best for use at the industrial scale. At industrial scale, strict nutrient-controlled growth condi ...
In large scale fermentors the cultivated cells are exposed to dynamic changes in the nutrient concentrations due to imperfect mixing. Based on the characterization of these nutrient gradients in space and time, a rational scale down design can be obtained. This study focuses on t ...
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial ...
In large-scale bioreactors, there is often insufficient mixing and as a consequence, cells experience uneven substrate and oxygen levels that influence product formation. In this study, the influence of dissolved oxygen (DO) gradients on the primary and secondary metabolism of a ...
Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling th ...
Product yield on carbohydrate feedstocks is a key performance indicator for industrial ethanol production with the yeast Saccharomyces cerevisiae. This paper reviews pathway engineering strategies for improving ethanol yield on glucose and/or sucrose in anaerobic cultures of this ...
Obtaining meaningful snapshots of the metabolome of microorganisms requires rapid sampling and immediate quenching of all metabolic activity, to prevent any changes in metabolite levels after sampling. Furthermore, a suitable extraction method is required ensuring complete extrac ...
Co-fermentation of mixed sugars to produce butanol is an attractive route in sucrochemical production chains. Herein, high-level mixed sugars from sugarcane bagasse hemicellulosic hydrolysate (HH) and molasses (SCM) were investigated as potential substrates for acetone-butanol-et ...
This study explores the relation between biomass-specific succinic acid (SA) production rate and specific growth rate of an engineered industrial strain of Saccharomyces cerevisiae, with the aim to investigate the extent to which growth and product formation can be uncoupled. Amm ...
Intracellular metabolites were evaluated during the continuous growth of Trichoderma harzianum P49P11 under carbon-limited conditions. Four different conditions in duplicate were investigated (10 and 20 g/L of glucose, 5.26/5.26 g/L of fructose/glucose and 10 g/L of sucrose in th ...
A key bottleneck in bioprocess development is that state-of-the-art tools used for screening of cells and optimization of cultivation conditions do not represent the conditions enforced at industrial scale. At industrial scale, cell growth is strictly controlled (“fed-batch”) to ...
We developed a microfluidic droplet on-demand (DoD) generator that enables the production of droplets with a volume solely governed by the geometry of the generator for a range of operating conditions. The prime reason to develop this novel type of DoD generator is that its robus ...
Cellulase production can be divided into two steps: growth stage; followed by an induction stage. To develop a mathematical model for the optimization of this strategy, two sets of experiments were performed in batch mode for parameter estimation. One set of experiments was perfo ...
The wild type strain Trichoderma harzianum was able to synthesize enzymes that can catalyse the hydrolysis of p-nitrophenyl-β-D-glucopyranoside (PNPGase) in glucose-limited chemostat cultures. Fructose/glucose and sucrose conditions provided low levels of PNPGase activity. To inv ...
Carbon-limited chemostat cultures were performed using different carbon sources (glucose, 10 and 20 g/L; sucrose, 10 g/L; fructose/glucose, 5.26/5.26 g/L; carboxymethyl cellulose, 10 g/L; and carboxymethyl cellulose/glucose, 5/5 g/L) to verify the capability of the wild type stra ...
Elucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial ...
Redox metabolism plays an essential role in the central metabolic network of all living cells, connecting, but at the same time separating, catabolic and anabolic pathways. Redox metabolism is inherently linked to the excretion of overflow metabolites. Overflow metabolism allows ...
A phenotypic screening of 12 industrial yeast strains and the well-studied laboratory strain CEN.PK113-7D at cultivation temperatures between 12 °C and 40 °C revealed significant differences in maximum growth rates and temperature tolerance. From those 12, two strains, one perfor ...
So far, the physiology of Saccharomyces cerevisiae at near-zero growth rates has been studied in retentostat cultures with a growth-limiting supply of the carbon and energy source. Despite its relevance in nature and industry, the near-zero growth physiology of S. cerevisiae unde ...
We report the development of a droplet-based microfluidic device, which enables long term culturing of microorganisms inside water in oil microdroplets under semi-continuous conditions. Firstly, a microdroplet containing yeast cells is trapped on chip. After an initial incubation ...