KN

K. Nagayoshi

21 records found

The X-ray Integral Field Unit (X-IFU) is an imaging spectrometer based on a large array of Transition Edge Sensors (TES) measured using Time Domain Multiplexing (TDM). For the development of a backup detector array, we have designed and realized a cryogenic test setup capable of ...
At SRON, we have been developing X-ray TES micro-calorimeters as backup technology for the X-ray Integral Field Unit (X-IFU) of the Athena mission, demonstrating excellent resolving powers both under DC and AC bias. We also developed a frequency-domain multiplexing (FDM) readout ...
We report on the x-ray background rate measured with transition-edge sensors (TES) micro-calorimeters under frequency-domain multiplexing (FDM) readout as a possible technology for future experiments aiming at a direct detection of axion-like particles. Future axion helioscopes w ...
In the early 2030s, ESAs new X-ray observatory, Athena, is scheduled to be launched. It will carry two main
instruments, one of which is the X-ray Integral Field Unit (X-IFU), an X-ray imaging spectrometer, which will consist of an array of several thousand transition-edge s ...
Large arrays of transition edge sensors (TESs) are the baseline for a number of future space observatories. For instance, the X-ray integral field unit (X-IFU) instrument on board the ATHENA space telescope will consist of ∼ 3000 TESs with high energy resolution (2eV at X-ray ene ...
Transition-edge-sensor (TES) microcalorimeters and bolometers are used for a variety of applications.The sensors are based on the steep temperature-dependent resistance of the normal-to-superconducting transition, and are thus intrinsically sensitive to magnetic fields. Conventio ...
We report measured Tc of superconducting Ti/Au bilayer strips with a width W varying from 5 to 50 µm. The strips were fabricated based on a Ti/Au bilayer that consists of a 41-nm-thick Ti layer to which a 280-nm-thick Au layer was added. We find that the Tc ...
We are developing a kilo-pixels Ti/Au TES array as a backup option for Athena X-IFU. Here we report on single-pixel performance of a 32 × 32 array operated in a Frequency Division Multiplexing (FDM) readout system, with bias frequencies in the range 1-5 MHz. We have tested the pi ...
Transition-edge sensors (TESs) are the selected technology for future spaceborne x-ray observatories, such as Athena, Lynx, and HUBS. These missions demand thousands of pixels to be operated simultaneously with high energy-resolving power. To reach these demanding requirements, e ...
Uniform large transition-edge sensor (TES) arrays are fundamental for the next generation of x-ray space observatories. These arrays are required to achieve an energy resolution ΔE < 3 eV full width at half maximum (FWHM) in the soft x-ray energy range. We are currently develo ...
Transition-edge sensors (TESs) are used as very sensitive thermometers in microcalorimeters aimed at detection of different wavelengths. In particular, for soft X-ray astrophysics, science goals require very high-resolution microcalorimeters which can be achieved with TESs couple ...
Superconducting transition-edge sensors (TESs) are highly sensitive detectors. Based on the outstanding performance on spectral resolution, the X-ray integral field unit (X-IFU) instrument on-board athena will be equipped with a large array of TES-based microcalorimeters. For opt ...
Hot Universe Baryon Surveyor (HUBS), a Chinese space mission, is proposed to find a large fraction of the so-called missing baryons, which would help us to understand more about the structure formation and evolution of the universe. Both theoretical and experimental results show ...
We are developing large Transition Edge Sensor (TES) arrays in combination with a frequency domain multiplexing readout for the next generation of X-ray space observatories. For operation under an AC-bias, the TESs have to be carefully designed and optimized. In particular, the u ...
The next generation of Far-infrared and X-ray space observatories will require detector arrays with thousands of transition edge sensor (TES) pixel. It is extremely important to have a tool that is able to characterize all the pixels and that can give a clear picture of the perfo ...
We are developing a transition edge sensor (TES) microcalorimeter array based on a Ti/Au superconducting bilayer, as a backup option for the X-IFU instrument on the Athena X-ray observatory. The array is read out by a frequency-division multiplexing readout system using a 1–5 MHz ...
We are developing X-ray microcalorimeters as a backup option for the baseline detectors in the X-IFU instrument on board the ATHENA space mission led by ESA and to be launched in the early 2030s. 5 × 5 mixed arrays with TiAu transition-edge sensor (TES), which have different high ...
SRON is developing X-ray transition edge sensor (TES) calorimeters arrays, as a backup technology for X-IFU instrument on the ATHENA space observatory. These detectors are based on a superconducting TiAu bilayer TES with critical temperature of 100 mK on a 1 μm thick SiN membrane ...