SL

Shizhen Li

13 records found

Selective Reduction Laser Sintering

A New Strategy for NO2 Gas Detection Based on In2O3 Nanoparticles

This study introduces a novel strategy for fabricating flexible nitrogen dioxide (NO2) gas sensors based on Indium Oxide (In2O3) nanoparticles (NPs) employing selective reduction laser sintering (SRLS) technology. The SRSL technology utilizes ultr ...
The significance of wafer bonding is fundamental to the progression of electronic systems. Common fabrication techniques for Cu pillars play a crucial role in establishing resilient and efficient interconnects within semiconductor devices. It is imperative to explore the potentia ...
This paper proposes and simulates research on the reverse recovery characteristics of two novel superjunction (SJ) MOSFETs by adjusting the doping profile. In the manufacturing process of the SJ MOSFET using multilayer epitaxial deposition (MED), the position and concentration of ...
In this article, the avalanche withstand capability and transient failure model of commercial 1200 V asymmetric trench gate SiC MOSFETs are investigated by experiment and simulation under single-pulse unclamped inductive switching (UIS) conditions. The limiting avalanche current ...
In recent years, metal crack-based stretchable flexible strain sensors have attracted significant attention in wearable device applications due to their extremely high sensitivity. However, the tradeoff between sensitivity and detection range has been an intractable dilemma, seve ...

Understanding the interaction of nucleotides with UVC light

An insight from quantum chemical calculation-based findings

Short-wave ultraviolet (also called UVC) irradiation is a well-adopted method of viral inactivation due to its ability to damage genetic material. A fundamental problem with the UVC inactivation method is that its mechanism of action on viruses is still unknown at the molecular l ...
Substrate metallization is a crucial factor affecting the mechanical properties of sintered nanoparticles in microelectronics applications, as it is essential for ensuring good adhesion between the substrate and the sintered material. In this study, we investigated the influence ...
Owing to the outstanding physical properties of graphene, its biosensing applications implemented by the terahertz metasurface are widely concerned and studied. Here, we present a novel design of the graphene metasurface, which consists of an individual graphene ring and an H-sha ...
This paper studied the behaviors of sintering between Ag nanoparticle (NP) and nanoflake (NF) in the same size by molecular dynamics simulation. Before the sintering simulation, the melting simulation of NF was carried out to calculate the melting points of NFs and investigate th ...
Recent reports focus on the hydrogenation engineering of monolayer boron phosphide and simultaneously explore its promising applications in nanoelectronics. Coupling density functional theory and finite element method, we investigate the bowtie triangle ring microstructure compos ...
Nano copper sintering technology has great potential to be widely applied in the wide-bandgap semiconductor packaging. In order to investigate the coalescence kinetics of copper nano particles for this application, a molecular dynamic (MD) simulation was carried out at low temper ...
The wide-bandgap semiconductors represented by GaN have a broad application prospect because of their high service temperature and high switch frequency. Quad-Flat-No-Lead (QFN) Package is currently one of the mainstream packaging methods due to its low cost and high efficiency. ...
Cu-Ag core-shell (CS) nanoparticle (NP) is considered as a cost-effective alternative material to nano silver sintering material in die attachment application. To further reduce the cost, the thickness of the Ag shell can be adjusted. Whereas the shell thickness will also affect ...