QZ

Qihang Zong

8 records found

Selective Reduction Laser Sintering

A New Strategy for NO2 Gas Detection Based on In2O3 Nanoparticles

This study introduces a novel strategy for fabricating flexible nitrogen dioxide (NO2) gas sensors based on Indium Oxide (In2O3) nanoparticles (NPs) employing selective reduction laser sintering (SRLS) technology. The SRSL technology utilizes ultr ...
This study introduces an innovative approach for fabricating flexible nitrogen dioxide (NO2) gas sensors based on In2O3 nanoparticles (NPs) using selective reduction laser sintering (SRLS) technology. The SRLS technology enables specific chemical reduction reactions du ...
Flexible strain sensors play a crucial role in health monitoring, smart wearable devices, and human–machine interaction. Three-dimensional surface evaluation methods for strain sensors offer advantages by being closer to actual strain, featuring a larger working range, and being ...

NiO-Doped Laser-Induced Graphene

A High-Performance Flexible Temperature Sensor

This study introduces a high-performance flexible temperature sensor prepared using laser-induced graphene (LIG) doped with nickel oxide (NiO) nanoparticles (NPs). Unlike conventional LIG surface doping methods, we developed a nickel oxide-doped LIG flexible temperature sensor by ...

Chitosan Oligosaccharide Laser Lithograph

A Facile Route to Porous Graphene Electrodes for Flexible On-Chip Microsupercapacitors

In this study, a convenient chitosan oligosaccharide laser lithograph (COSLL) technology was developed to fabricate laser-induced graphene (LIG) electrodes and flexible on-chip microsupercapacitors (MSCs). With a simple one-step CO2 laser, the pyrolysis of a chitosan o ...
In recent years, flexible strain sensors based on metal cracks have garnered significant interest for their exceptional sensitivity. However, striking a balance between sensitivity and detection range remains a significant challenge, which often limits its wider application. Here ...
The fabrication of flexible pressure sensors with low cost, high scalability, and easy fabrication is an essential driving force in developing flexible electronics, especially for high-performance sensors that require precise surface microstructures. However, optimizing complex f ...
In recent years, metal crack-based stretchable flexible strain sensors have attracted significant attention in wearable device applications due to their extremely high sensitivity. However, the tradeoff between sensitivity and detection range has been an intractable dilemma, seve ...