Circular Image

42 records found

Human gait simulation plays a crucial role in providing insights into various aspects of locomotion, such as diagnosing injuries and impairments, assessing abnormal gait patterns, and developing assistive and rehabilitation technologies. To achieve more realistic gait simulation ...
In this work, we propose a method of capturing the patient’s discomfort during robotic shoulder physiotherapy, creating "discomfort maps". These maps depict the personalized distribution of discomfort that each patient perceived across their shoulder range of motion, facilitating ...
Neuromuscular disorders often lead to ankle plantar flexor muscle weakness, which impairs ankle push-off power and forward propulsion during gait. To improve walking speed and reduce metabolic cost of transport (mCoT), patients with plantar flexor weakness are provided dorsal-lea ...
People suffering from conditions affecting their activities of daily living and those who do straining repetitive tasks could be assisted using supportive devices. These devices have generally been stiff in design, with more recent advances exploring soft suits, removing the need ...

Modeling of inflicted head injury by shaking trauma in children

What can we learn?: Update to parts I&II: A systematic review of animal, mathematical and physical models

Inflicted shaking trauma can cause injury in infants, but exact injury mechanisms remain unclear. Controversy exists, particularly in courts, whether additional causes such as impact are required to produce injuries found in cases of (suspected) shaking. Publication rates of stud ...
While shoulder injuries resulting from the bench press exercise are commonly reported, no biomechanical evidence for lowering injury risk is currently available. Therefore, the aim of the present study was to compare musculoskeletal shoulder loads and potential injury risk during ...
The advancement and development of human modeling have greatly benefited from principles used in robotics, for instance, multibody dynamics laid the foundations for physics engines of human movement simulation, and the robotics and control theory were used to contextualize human ...

Does enforcing glenohumeral joint stability matter?

A new rapid muscle redundancy solver highlights the importance of non-superficial shoulder muscles

The complexity of the human shoulder girdle enables the large mobility of the upper extremity, but also introduces instability of the glenohumeral (GH) joint. Shoulder movements are generated by coordinating large superficial and deeper stabilizing muscles spanning numerous degre ...
In this research, we propose a novel method to estimate and monitor rotator cuff tendon strains during active robotic-assisted rehabilitation. This is a significant step forward from our previous work which estimated these tendon strains during passive exercises (i.e., no muscle ...

OpenSense

An open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations

Background: The ability to measure joint kinematics in natural environments over long durations using inertial measurement units (IMUs) could enable at-home monitoring and personalized treatment of neurological and musculoskeletal disorders. However, drift, or the accumulation of ...
Neuromusculoskeletal models can be used to evaluate aberrant muscle function in cerebral palsy (CP), for example by estimating muscle and joint contact forces during gait. However, to be accurate, models should include representative musculotendon parameters. We aimed to estimate ...

From Human Walking to Bipedal Robot Locomotion

Reflex Inspired Compensation on Planned and Unplanned Downsteps

Humans are able to negotiate downstep behaviors-both planned and unplanned-with remarkable agility and ease. The goal of this paper is to systematically study the translation of this human behavior to bipedal walking robots, even if the morphology is inherently different. Concret ...
Markerless estimation of 3D Kinematics has the great potential to clinically diagnose and monitor movement disorders without referrals to expensive motion capture labs; however, current approaches are limited by performing multiple de-coupled steps to estimate the kinematics of a ...

Conclusion or Illusion

Quantifying Uncertainty in Inverse Analyses From Marker-Based Motion Capture due to Errors in Marker Registration and Model Scaling

Estimating kinematics from optical motion capture with skin-mounted markers, referred to as an inverse kinematic (IK) calculation, is the most common experimental technique in human motion analysis. Kinematics are often used to diagnose movement disorders and plan treatment strat ...
Soft exosuits can help to prevent work-related musculoskeletal disorders by offloading human muscles through the application of external forces across the human joints. Many exosuits achieve this through tension producing elements called as exotendons. However, the design of thes ...
In this work, we propose a method for monitoring and managing rotator-cuff (RC) tendon strains in human-robot collaborative physical therapy for shoulder rehabilitation. We integrate a high-resolution biomechanical model with a collaborative industrial robot arm and an impedance ...
Humans typically coordinate their muscles to meet movement objectives like minimizing energy expenditure. In the presence of pathology, new objectives gain importance, like reducing loading in an osteoarthritic joint, but people often do not change their muscle coordination patte ...
Accurate computation of joint angles from optical marker data using inverse kinematics methods requires that the locations of markers on a model match the locations of experimental markers on participants. Marker registration is the process of positioning the model markers so tha ...
In this work, we explore using computational musculoskeletal modeling to equip an industrial collaborative robot with awareness of the internal state of a patient to safely deliver physical therapy. A major concern of robot-mediated physical therapy is that robots may unwittingly ...
Musculoskeletal models enable movement scientists to examine muscle function by computing the mechanical work done by muscles during motor tasks. To estimate muscle work accurately requires a model that is physiologically plausible. Previous models of the human shoulder have coup ...