Circular Image

L. Peternel

50 records found

For successful goal-directed human-robot interaction, the robot should adapt to the intentions and actions of the collaborating human. This can be supported by musculoskeletal or data-driven human models, where the former are limited to lower-level functioning such as ergonomics, ...
In the original version of the book, on page xi, one of the authors listed for Chapter 2 is “R. Schnmehl”, which should be “R. Schmehl”. On page 21, the same correction needs to be made twice, in the listed authors at the top of the page and also in the footnotes. “Schnmehl” shou ...
In recent years, providing additional visual feedback about the interaction forces has been found to offer benefits to haptic-assisted teleoperation. However, there is limited insight into the effects of the design of force feedback-related visual cues and the type of visual disp ...
During the learning of a new sensorimotor task, individuals are usually provided with instructional stimuli and relevant information about the target task. The inclusion of haptic devices in the study of this kind of learning has greatly helped in the understanding of how an indi ...

Enabling Embodied Human-Robot Co-Learning

Requirements, Method, and Test With Handover Task

Despite a large body of research on robot learning, it has not yet been thoroughly studied how collaborating humans and robots learn reciprocally. In such situations, both humans and robots continuously learn about each other and the task through interaction. This letter addresse ...
In order for off-Earth top surface structures built from regolith to protect astronauts from radiation, they need to be several metres thick. In a feasibility study, funded by the European Space Agency, Technical University Delft (TUD aka TU Delft) explored the possibility of bui ...
Performing bimanual tasks with dual robotic setups can drastically increase the impact on industrial and daily life applications. However, performing a bimanual task brings many challenges, such as synchronization and coordination of the single-arm policies. This article proposes ...

Learning periodic skills for robotic manipulation

Insights on orientation and impedance

Many daily tasks exhibit a periodic nature, necessitating that robots possess the ability to execute them either alone or in collaboration with humans. A widely used approach to encode and learn such periodic patterns from human demonstrations is through periodic Dynamic Movement ...
In this work, we propose a method of capturing the patient’s discomfort during robotic shoulder physiotherapy, creating "discomfort maps". These maps depict the personalized distribution of discomfort that each patient perceived across their shoulder range of motion, facilitating ...
Real-world applications of Artificial Intelligence (AI) in architecture have been explored more recently at Technical University (TU) Delft by integrating AI in Design-to-Robotic-Production-Assembly and -Operation (D2RPA&O) methods. These embed robotics into building processe ...
In this paper, we present a design and evaluation of a novel finger-operated teleimpedance interface used to command stiffness ellipsoids to the remote robot. The proposed interface provides a practical alternative to the state-of-the-art teleimpedance interfaces based on physiol ...
This paper presents a method for semiautonomous teleimpedance where the control is shared between the human operator and the robot. The human commands the position of the teleoperated robotic arm end-effector while the robot autonomously adjusts the impedance depending on the obj ...
Teleoperation is a crucial technology enabling human operators to control robots remotely to perform tasks in hazardous and difficult-to-access environments. Tasks in such environments often involve complex physical interactions with tools and objects of various softness. To this ...
In this research, we propose a novel method to estimate and monitor rotator cuff tendon strains during active robotic-assisted rehabilitation. This is a significant step forward from our previous work which estimated these tendon strains during passive exercises (i.e., no muscle ...
Despite the significant progress made in making robots more intelligent and autonomous, today, teleoperation remains a dominant robot control paradigm for the execution of complex and highly unpredictable tasks. Attempts have been made to make teleoperation systems stable, easy t ...
Robotic teleoperation is used in various applications, including the nuclear industry, where the experience and intelligence of a human operator are necessary for making complex decisions that are beyond the autonomy of robots. Human-robot interfaces that help strengthen an opera ...
This paper studies non-physical feedback mechanisms to guide human workers toward ergonomic body postures. Specifically, the focus is to solve the tasks that involve no direct physical interaction between the human and the robotic system, therefore tactile guidance by the robot b ...
Daily household tasks involve manipulation in cluttered and unpredictable environments and service robots require complex skills and adaptability to perform such tasks. To this end, we developed a teleoperated online learning approach with a novel skill refinement method, where t ...

Does enforcing glenohumeral joint stability matter?

A new rapid muscle redundancy solver highlights the importance of non-superficial shoulder muscles

The complexity of the human shoulder girdle enables the large mobility of the upper extremity, but also introduces instability of the glenohumeral (GH) joint. Shoulder movements are generated by coordinating large superficial and deeper stabilizing muscles spanning numerous degre ...
Skill propagation among robots without human involvement can be crucial in quickly spreading new physical skills to many robots. In this respect, it is a good alternative to pure reinforcement learning, which can be time-consuming, or learning from human demonstration, which requ ...